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Abstract

The paper compares two kinds of models for logics of
knowledge and belief, neighbourhood models and epistemic
weight models. We give sound and complete calculi for both,
and we show that our calculus for neighbourhood models is
sound but not complete for epistemic weight models. Epistemic
weight models combine knowledge and probability by using
epistemic accessibility relations and weights to define
subjective probabilities. Our Probability Comparison Calculus
for this class of models is a further simplification of the calculus
that was presented in AIML 2014.
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Laplace on Causes of Disagreement Between People

When concerned with things that are only likely true,
the difference in how informed every man is about
them is one of the principal causes of the diversity of
opinions about the same objects.



Combining DEL and Probability

I Kooi’s thesis [Koo03], Van Benthem [Ben03] , Van
Benthem CS [BGK09]

I Inspiration for this: work of Fagin and Halpern in the 1990s
[FHM90].

I Related: [Her03] on modal probability and action.
I Calculus for weight models: [ES14]. Further development

presented here based on: [DR15, ER14].
I Logic with explicit belief comparison operator: [JG13], or

[Nar07] for an overview of the literature. Related: evidence
models [BFDP14].

I Probabilistic Logic of Communication and Change:
[Ach14].

I Prehistory of this: De Finetti [Fin37, Fin51].
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De Finetti’s Requirements for Qualitative Probability

I De Finetti [Fin37, Fin51] proposed the following
requirements for a binary relation � on a (finite and
non-empty) set W :

nonnegativity A � ∅
nontriviality ∅ 6�W

totality A � B or B � A
transitivity if A � B and B � C then A � C

quasi-additivity if (A ∪ B) ∩ C = ∅
then A � B iff A ∪ C � B ∪ C

I A probability measure on W is a function µ : P(W )→ R
satisfying µ(∅) = 0, µ(W ) = 1 and µ(A ∪ B) = µ(A) + µ(B)
for A,B ⊆W with A ∩ B = ∅ (additivity).

I De Finetti’s conjecture: the five requirements completely
determine a probability measure on W .
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De Finetti’s Conjecture Refuted

Theorem
There is a relation satisfying De Finetti’s axioms that does not
agree with any probability measure [KPS59].

I Consider W = {p,q, r , s, t} with a weight map ν : W → N
given by ν(p) = 4, ν(q) = 1, ν(r) = 3, ν(s) = 2, ν(t) = 6.

I Extend ν to subsets of W . Let �ν on W be given by
A �ν B iff ν(A) ≥ ν(B).

I Define � as
� := �ν −{(st ,pqr)}.

This yields: p ≈ qr , rs ≈ pq,qt ≈ pr ,pqr � st , and �
satisfies the De Finetti axioms.

I � does not agree with any probability measure µ:
I It follows from µ(p) = µ(qr), µ(rs) = µ(pq), µ(qt) = µ(pr)

that µ(st) = µ(pqr). Thus, µ cannot agree with pqr � st .
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Scott Axioms for �

I A pair of k -length sequences of sets (A1, . . . ,Ak ) and
(B1, . . . ,Bk ) is balanced if for each w ∈W it holds that
|{i | w ∈ Ai}| = |{i | w ∈ Bi}|.

I The Scott axiom for � for length k (k -cancellation):

if (A1, . . . ,Ak ,X ) and (B1, . . . ,Bk ,Y ) are balanced,
and Ai � Bi for each i with 1 ≤ i ≤ k , then Y � X .

I If a relation � is representable by a probability measure,
then � must satisfy cancellation for any k .

I Scott [Sco64]: any � relation satisfying nonnegativity,
nontriviality, totality and cancellation for any k ∈ N
determines a probability measure.
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Representing Belief as Truth in a Neighbourhood
An Epistemic Neighbourhood ModelM is a tuple
(W ,∼,N,V ) where

I W is a non-empty set of worlds.
I ∼ is a function that assigns to every agent i ∈ Ag an

equivalence relation ∼i on W . We use [w ]i for the ∼i class
of w , i.e., for the set {v ∈W | w ∼i v}.

I N is a function that assigns to every agent i ∈ Ag and
world w ∈W a collection Ni(w) of sets of worlds—each
such set called a neighbourhood of w—subject to the
following conditions.

(c) ∀X ∈ Ni(w) : X ⊆ [w ]i .
(n) [w ]i ∈ Ni(w).
(a) ∀v ∈ [w ]i : Ni(v) = Ni(w).
(m) ∀X ⊆ Y ⊆ [w ]i : if X ∈ Ni(w), then Y ∈

Ni(w).
(d) ∀X ∈ Ni(w), [w ]i − X /∈ Ni(w).

(sc) ∀X ,Y ⊆ [w ]i : if [w ]i − X /∈ Ni(w) and X ( Y ,
then Y ∈ Ni(w).

I V is a valuation function that assigns to every w ∈W a
subset of Prop.
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Language and Truth

I

φ ::= > | p | ¬φ | (φ ∧ φ) | Kiφ | Biφ.

I

M,w |= Kiφ iff for all v ∈ [w ]i :M, v |= φ.

I

M,w |= Biφ iff for some X ∈ Ni(w)

it holds that X = {v ∈ [w ]i | M, v |= φ}.
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Neighbourhood Belief Not Closed Under Conjunction

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w , v}, {v ,u}, {w ,u}, {w , v ,u}}

I In all worlds, K (p ∨ q ∨ r) is true.
I In all worlds B¬p, B¬q, B¬r are true.
I In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



Neighbourhood Belief Not Closed Under Conjunction

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w , v}, {v ,u}, {w ,u}, {w , v ,u}}

I In all worlds, K (p ∨ q ∨ r) is true.

I In all worlds B¬p, B¬q, B¬r are true.
I In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



Neighbourhood Belief Not Closed Under Conjunction

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w , v}, {v ,u}, {w ,u}, {w , v ,u}}

I In all worlds, K (p ∨ q ∨ r) is true.
I In all worlds B¬p, B¬q, B¬r are true.

I In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



Neighbourhood Belief Not Closed Under Conjunction

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w , v}, {v ,u}, {w ,u}, {w , v ,u}}

I In all worlds, K (p ∨ q ∨ r) is true.
I In all worlds B¬p, B¬q, B¬r are true.
I In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



ED Calculus for Epistemic Neighbourhood Logic

(Taut) All instances of propositional tautologies
(Dist-K) Ki(φ→ ψ)→ Kiφ→ Kiψ

(T) Kiφ→ φ
(PI-K) Kiφ→ KiKiφ
(NI-K) ¬Kiφ→ Ki¬Kiφ

(N) Bi>.
(PI-KB) Biφ→ KiBiφ
(NI-KB) ¬Biφ→ Ki¬Biφ

(M) Ki(φ→ ψ)→ Biφ→ Biψ

(D) Biφ→ B̌iφ.
(SC) B̌iφ ∧ Ǩi(¬φ ∧ ψ)→ Bi(φ ∨ ψ)

φ→ ψ φ

ψ
(MP)

φ

Kiφ
(Nec-K)



Soundness and Completeness

Theorem
ED calculus is sound and complete for Epistemic
Neighbourhood Models.



Epistemic Weight Models

An epistemic weight model for agents I and basic
propositions P is a tupleM = (W ,R,L,V ) where

I W is a non-empty countable set of worlds,
I R assigns to every agent i ∈ I an equivalence relation ∼i

on W ,
I L assigns to every i ∈ I a function Li from W to Q+ (the

positive rationals), subject to the following boundedness
condition (*).

∀i ∈ I∀w ∈W
∑

u∈[w ]i

Li(u) <∞. (*)

where [w ]i is the cell of w in the partition induced by ∼i .
I V assigns to every w ∈W a subset of P,



Truth in Weight Models

I Use Li(X ) for
∑

x∈X Li(x).
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Agreement, Incompleteness

I Definition (Agreement)
LetM = (W ,R,N,V ) be a neighbourhood model and let L be
a weight function forM. Then L agrees withM if it holds for all
agents i and all w ∈W that

X ∈ Ni(w) iff Li(X ) > Li([w ]i − X ).

I Theorem
There exists an epistemic neighbourhood modelM that has no
agreeing weight function.
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Incompleteness: Example from the Fano plane

a e
f

c

g
db

I Let Prop := {a,b, c,d ,e, f ,g}. Let
X = {abc, cde,afe,agd , cgf ,egb,bdf} (the set of lines in
the Fano plane)

I No complement of a line contains a line.
I If one extends the complement of a line with another point,

the result will contain a line.
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Incompleteness (ctd)

I The members of X ′ are the maximal sets that do not
contain a line:

X ′ := {abc, cde,afe,agd , cgf ,egb,bdf}
= {defg,abfg,bcdg,bcef ,abde,acdf ,aceg}.

I The neighbourhoods Y are sets that contain at least one
line:

Y := {Y | ∃X ∈ X : X ⊆ Y ⊆W}.

I LetM := (W ,R,N,V ) be defined by W := Prop,
R = W ×W , V (w) = {w}, and for all w ∈W , N(w) = Y.

I Check that X ′ ∩ Y = ∅. This shows that condition (d) holds.
I Condition (sc) holds because adding a point to any

member of X ′ yields a neighbourhood.
I M is a neighbourhood model.
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Ctd

I Suppose there exists a weight function L that agrees with
M.

I Since each letter p ∈W occurs in exactly three of the
seven members of X :∑

X∈X
L(X ) =

∑
p∈W

3 · L({p}).

I Since each letter p ∈W occurs in exactly four of the seven
members of X ′:∑

X∈X ′

L(X ) =
∑
p∈W

4 · L({p}).

I From the fact that L(X ) > L(X ) for all members X of X we
get: ∑

X∈X
L(X ) >

∑
X∈X

L(X ) =
∑

X∈X ′

L(X ).

I Contradiction. So no such L exists.
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Epistemic Comparison Logic

I Use ⊕ as a list-forming operation for formulas.
I φ1 ⊕ · · · ⊕ φn should be thought of as the n-element

formula list (φ1, . . . , φn).
I Use Φ to range over formula lists, and φ⊕ Φ for the

extension of Φ at the front with φ.

Definition (EC Language)

φ ::= > | p | ¬φ | φ ∧ φ | Φ ≤i Φ
Φ ::= φ | φ⊕ Φ

Abbreviations:
I Φ <i Ψ for Φ ≤i Ψ ∧ ¬Ψ ≤i Φ.
I Φ =i Ψ for Φ ≤i Ψ ∧Ψ ≤i Φ.
I Biφ for (¬φ) <i φ,
I B̌iφ for (¬φ) ≤i φ (“Belief as willingness to bet”),
I Kiφ for > ≤i φ,
I Ǩiφ for ⊥ <i φ (“Knowledge as certainty”).
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Truth for EC Logic
LetM = (W ,R,L,V ) be an epistemic weight model, let
w ∈W .

[[φ]]M := {w ∈W | M,w |= φ}
[[φ]]w ,iM := [[φ]]M ∩ [w ]i
Lw ,iφ := Li([[φ]]w ,iM )

M,w |= > always
M,w |= ¬φ iff notM,w |= φ
M,w |= φ1 ∧ φ2 iff M,w |= φ1 andM,w |= φ2
M,w |= Φ ≤i Ψ iff

∑
φ∈Φ Lw ,iφ ≤

∑
ψ∈Ψ Lw ,iψ∑

φ∈Φ sums over occurrences of φ in the list Φ.
Weight function and epistemic accessibility relation together
determine probability:

PMw ,iφ :=
Lw ,iφ

Lw ,i>

(
=

Li([[φ]]M ∩ [w ]i)

Li([w ]i)

)



EC Calculus
Taut instances of propositional tautologies

ProbT (> ≤i φ)→ φ

ProbImpl > ≤i (φ→ ψ)→ (φ ≤i ψ)

PropPos (Φ ≤i Ψ)→ > ≤i (Φ ≤i Ψ)

PropNeg (Φ >i Ψ)→ > ≤i (Φ >i Ψ)

PropAdd (φ ∧ ψ)⊕ (φ ∧ ¬ψ) =i φ

Tran (Φ ≤i Ψ) ∧ (Ψ ≤i Ξ)→ (Φ ≤i Ξ)

Tot (Φ ≤i Ψ) ∨ (Ψ ≤i Φ)

ComL (Φ1 ⊕ Φ2 ≤i Ψ)↔ (Φ2 ⊕ Φ1 ≤i Ψ)

ComR (Φ ≤i Ψ1 ⊕Ψ2)↔ (Φ ≤i Ψ2 ⊕Ψ1)

Add (Φ1 ≤i Ψ1) ∧ (Φ2 ≤i Ψ2)→ (Φ1 ⊕ Φ2 ≤i Ψ1 ⊕Ψ2)

Succ (Φ⊕> ≤i Ψ⊕>)→ (Φ ≤i Ψ)

MP From ` φ and ` φ→ ψ derive ` ψ
NEC From ` φ derive ` > ≤i φ



Completeness of EC Calculus
Theorem (Completeness of EC Logic)
The EC calculus is complete for epistemic weight models.

I From Epistemic Probability Models to Epistemic
Neighbourhood Models:
IfM = (W ,R,L,V ) is an epistemic weight model, then
M• is the tuple (W ,R,N,V ) given by replacing the weight
function by a function N, where

Ni(w) = {X ⊆ [w ]i | Li(X ) > Li([w ]i − X )}.

Theorem
For any epistemic weight modelM it holds thatM• is a
neighbourhood model.

Theorem
For all ED formulas φ, for all epistemic probability modelsM,
for all worlds w ofM: M•,w |= φ iffM,w |= φ.
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The Disease Problem

I You are from a population with a statistical chance of 1 in
100 of having disease D.

I Screening test for this has false positive rate of 0.2 and
false negative rate of 0.1.

I You tested positive (T).
I Should you believe you have disease D?
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Weight Model for the Disease Problem

dt 0.9 dt 0.1

dt 0.2 ∗ 99 dt 0.8 ∗ 99

⇒ !t ⇒

dt 0.9

dt 0.2 ∗ 99

P(d) = 0.9
0.9+0.2∗99 = 9

207 = 1
23
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I Extend the EC language with an operator [±φ], for publicly
announcing the value of φ. This mapsM toM±φ.

I IfM = (W ,∼,L,V ) and φ is an EC formula, then
M±φ = (W±φ,∼±φ,L±φ,V±φ) where:

I W±φ = W ,
I ∼±φ

i = {(w , v) ∈W 2 | w ∼i v andM,w |= φ iffM, v |= φ}.
I L±φ = L,
I V±φ = V .

I The operation [±φ] cuts the i-accessibility links between φ
and ¬φ worlds, for all agents i .

I After the update with t the probability of d equals
0.9

0.9+0.2∗99 = 9
207 = 1

23 .
I After the update with ¬t the probability of d equals

0.1
0.1+0.8∗88 = 1

704 .
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Compare with Applying Bayes’ Rule

P(D|T ) =
P(T |D)P(D)

P(T )
=

P(T |D)P(D)

P(T |D)P(D) + P(T |¬D)P(¬D)

P(T |D) = 0.9,P(D) = 0.01,P(¬D) = 0.99,P(T |¬D) = 0.2
P(D|T ) = 1

23 .



Further Work

I Develop poor man’s Bayesian belief: define a map from
neighbourhood modelsM to updated neighbourhood
modelsM±φ, and axiomatize the resulting logic.

I Extend the EC calculus to a full blown probabilistic logic of
communication and change.

I Implement model checkers for probabilistic update logic.
I Extend the logic to capture the distinction between risk

and uncertainty [Kni21].
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