Update, Probability, Knowledge and Belief

Jan van Eijck ${ }^{1}$, ${ }^{2}$ and Bryan Renne ${ }^{3}$

${ }^{1}$ Centrum Wiskunde \& Informatica (CWI) Amsterdam
${ }^{2}$ Institute for Logic, Language and Computation (ILLC)
Amsterdam
${ }^{3}$ University of British Columbia, Faculty of Medicine Vancouver, Canada

Sept 22016 — AiML, Budapest

Abstract

The paper compares two kinds of models for logics of knowledge and belief, neighbourhood models and epistemic weight models. We give sound and complete calculi for both, and we show that our calculus for neighbourhood models is sound but not complete for epistemic weight models. Epistemic weight models combine knowledge and probability by using epistemic accessibility relations and weights to define subjective probabilities. Our Probability Comparison Calculus for this class of models is a further simplification of the calculus that was presented in AIML 2014.

Outline

Probability and Information

Outline

Probability and Information

Epistemic Neighbourhood Models

Outline

Probability and Information

Epistemic Neighbourhood Models

Epistemic Weight Models and Incompleteness

Outline

Probability and Information

Epistemic Neighbourhood Models

Epistemic Weight Models and Incompleteness

Epistemic Weight Models and Completeness

Outline

Probability and Information

Epistemic Neighbourhood Models

Epistemic Weight Models and Incompleteness
Epistemic Weight Models and Completeness

Updates

Outline

Probability and Information

Epistemic Neighbourhood Models

Epistemic Weight Models and Incompleteness
Epistemic Weight Models and Completeness

Updates
Further Questions

Laplace on Causes of Disagreement Between People

When concerned with things that are only likely true, the difference in how informed every man is about them is one of the principal causes of the diversity of opinions about the same objects.

Combining DEL and Probability

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].
- Related: [Her03] on modal probability and action.

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].
- Related: [Her03] on modal probability and action.
- Calculus for weight models: [ES14]. Further development presented here based on: [DR15, ER14].

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].
- Related: [Her03] on modal probability and action.
- Calculus for weight models: [ES14]. Further development presented here based on: [DR15, ER14].
- Logic with explicit belief comparison operator: [JG13], or [Nar07] for an overview of the literature. Related: evidence models [BFDP14].

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].
- Related: [Her03] on modal probability and action.
- Calculus for weight models: [ES14]. Further development presented here based on: [DR15, ER14].
- Logic with explicit belief comparison operator: [JG13], or [Nar07] for an overview of the literature. Related: evidence models [BFDP14].
- Probabilistic Logic of Communication and Change: [Ach14].

Combining DEL and Probability

- Kooi's thesis [Koo03], Van Benthem [Ben03], Van Benthem CS [BGK09]
- Inspiration for this: work of Fagin and Halpern in the 1990s [FHM90].
- Related: [Her03] on modal probability and action.
- Calculus for weight models: [ES14]. Further development presented here based on: [DR15, ER14].
- Logic with explicit belief comparison operator: [JG13], or [Nar07] for an overview of the literature. Related: evidence models [BFDP14].
- Probabilistic Logic of Communication and Change: [Ach14].
- Prehistory of this: De Finetti [Fin37, Fin51].

De Finetti's Requirements for Qualitative Probability

De Finetti's Requirements for Qualitative Probability

- De Finetti [Fin37, Fin51] proposed the following requirements for a binary relation \succeq on a (finite and non-empty) set W :

nonnegativity	$A \succeq \emptyset$
nontriviality	$\emptyset \succeq W$
totality	$A \succeq B$ or $B \succeq A$
transitivity	if $A \succeq B$ and $B \succeq C$ then $A \succeq C$
quasi-additivity	if $(A \cup B) \cap C=\emptyset$
	then $A \succeq B$ iff $A \cup C \succeq B \cup C$

De Finetti's Requirements for Qualitative Probability

- De Finetti [Fin37, Fin51] proposed the following requirements for a binary relation \succeq on a (finite and non-empty) set W :

nonnegativity	$A \succeq \emptyset$
nontriviality	$\emptyset \succeq W$
totality	$A \succeq B$ or $B \succeq A$
transitivity	if $A \succeq B$ and $B \succeq C$ then $A \succeq C$
quasi-additivity	if $(A \cup B) \cap C=\emptyset$
	then $A \succeq B$ iff $A \cup C \succeq B \cup C$

- A probability measure on W is a function $\mu: \mathcal{P}(W) \rightarrow \mathbb{R}$ satisfying $\mu(\emptyset)=0, \mu(W)=1$ and $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \subseteq W$ with $A \cap B=\emptyset$ (additivity).

De Finetti's Requirements for Qualitative Probability

- De Finetti [Fin37, Fin51] proposed the following requirements for a binary relation \succeq on a (finite and non-empty) set W :

nonnegativity	$A \succeq \emptyset$
nontriviality	$\emptyset \succeq W$
totality	$A \succeq B$ or $B \succeq A$
transitivity	if $A \succeq B$ and $B \succeq C$ then $A \succeq C$
quasi-additivity	if $(A \cup B) \cap C=\emptyset$
	then $A \succeq B$ iff $A \cup C \succeq B \cup C$

- A probability measure on W is a function $\mu: \mathcal{P}(W) \rightarrow \mathbb{R}$ satisfying $\mu(\emptyset)=0, \mu(W)=1$ and $\mu(A \cup B)=\mu(A)+\mu(B)$ for $A, B \subseteq W$ with $A \cap B=\emptyset$ (additivity).
- De Finetti's conjecture: the five requirements completely determine a probability measure on W.

De Finetti's Conjecture Refuted

Theorem
There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

De Finetti's Conjecture Refuted

Theorem

There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

- Consider $W=\{p, q, r, s, t\}$ with a weight map $\nu: W \rightarrow \mathbb{N}$ given by $\nu(p)=4, \nu(q)=1, \nu(r)=3, \nu(s)=2, \nu(t)=6$.

De Finetti's Conjecture Refuted

Theorem

There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

- Consider $W=\{p, q, r, s, t\}$ with a weight map $\nu: W \rightarrow \mathbb{N}$ given by $\nu(p)=4, \nu(q)=1, \nu(r)=3, \nu(s)=2, \nu(t)=6$.
- Extend ν to subsets of W. Let \succeq_{ν} on W be given by $A \succeq{ }_{\nu} B$ iff $\nu(A) \geq \nu(B)$.

De Finetti's Conjecture Refuted

Theorem

There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

- Consider $W=\{p, q, r, s, t\}$ with a weight map $\nu: W \rightarrow \mathbb{N}$ given by $\nu(p)=4, \nu(q)=1, \nu(r)=3, \nu(s)=2, \nu(t)=6$.
- Extend ν to subsets of W. Let \succeq_{ν} on W be given by $A \succeq{ }_{\nu} B$ iff $\nu(A) \geq \nu(B)$.
- Define \succeq as

$$
\succeq:=\succeq_{\nu}-\{(s t, p q r)\} .
$$

This yields: $p \approx q r, r s \approx p q, q t \approx p r, p q r \succ s t$, and \succeq satisfies the De Finetti axioms.

De Finetti's Conjecture Refuted

Theorem

There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

- Consider $W=\{p, q, r, s, t\}$ with a weight map $\nu: W \rightarrow \mathbb{N}$ given by $\nu(p)=4, \nu(q)=1, \nu(r)=3, \nu(s)=2, \nu(t)=6$.
- Extend ν to subsets of W. Let \succeq_{ν} on W be given by $A \succeq{ }_{\nu} B$ iff $\nu(A) \geq \nu(B)$.
- Define \succeq as

$$
\succeq:=\succeq_{\nu}-\{(s t, p q r)\} .
$$

This yields: $p \approx q r, r s \approx p q, q t \approx p r, p q r \succ s t$, and \succeq satisfies the De Finetti axioms.

- \succeq does not agree with any probability measure μ :

De Finetti's Conjecture Refuted

Theorem

There is a relation satisfying De Finetti's axioms that does not agree with any probability measure [KPS59].

- Consider $W=\{p, q, r, s, t\}$ with a weight map $\nu: W \rightarrow \mathbb{N}$ given by $\nu(p)=4, \nu(q)=1, \nu(r)=3, \nu(s)=2, \nu(t)=6$.
- Extend ν to subsets of W. Let \succeq_{ν} on W be given by $A \succeq{ }_{\nu} B$ iff $\nu(A) \geq \nu(B)$.
- Define \succeq as

$$
\succeq:=\succeq_{\nu}-\{(s t, p q r)\} .
$$

This yields: $p \approx q r, r s \approx p q, q t \approx p r, p q r \succ s t$, and \succeq satisfies the De Finetti axioms.

- \succeq does not agree with any probability measure μ :
- It follows from $\mu(p)=\mu(q r), \mu(r s)=\mu(p q), \mu(q t)=\mu(p r)$ that $\mu(s t)=\mu(p q r)$. Thus, μ cannot agree with $p q r \succ s t$.

Scott Axioms for \succeq

Scott Axioms for \succeq

- A pair of k-length sequences of sets $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ is balanced if for each $w \in W$ it holds that $\left|\left\{i \mid w \in A_{i}\right\}\right|=\left|\left\{i \mid w \in B_{i}\right\}\right|$.

Scott Axioms for \succeq

- A pair of k-length sequences of sets $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ is balanced if for each $w \in W$ it holds that $\left|\left\{i \mid w \in A_{i}\right\}\right|=\left|\left\{i \mid w \in B_{i}\right\}\right|$.
- The Scott axiom for \succeq for length k (k-cancellation):
if $\left(A_{1}, \ldots, A_{k}, X\right)$ and $\left(B_{1}, \ldots, B_{k}, Y\right)$ are balanced, and $A_{i} \succeq B_{i}$ for each i with $1 \leq i \leq k$, then $Y \succeq X$.

Scott Axioms for \succeq

- A pair of k-length sequences of sets $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ is balanced if for each $w \in W$ it holds that $\left|\left\{i \mid w \in A_{i}\right\}\right|=\left|\left\{i \mid w \in B_{i}\right\}\right|$.
- The Scott axiom for \succeq for length k (k-cancellation):
if $\left(A_{1}, \ldots, A_{k}, X\right)$ and $\left(B_{1}, \ldots, B_{k}, Y\right)$ are balanced, and $A_{i} \succeq B_{i}$ for each i with $1 \leq i \leq k$, then $Y \succeq X$.
- If a relation \succeq is representable by a probability measure, then \succeq must satisfy cancellation for any k.

Scott Axioms for \succeq

- A pair of k-length sequences of sets $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(B_{1}, \ldots, B_{k}\right)$ is balanced if for each $w \in W$ it holds that $\left|\left\{i \mid w \in A_{i}\right\}\right|=\left|\left\{i \mid w \in B_{i}\right\}\right|$.
- The Scott axiom for \succeq for length k (k-cancellation):
if $\left(A_{1}, \ldots, A_{k}, X\right)$ and $\left(B_{1}, \ldots, B_{k}, Y\right)$ are balanced, and $A_{i} \succeq B_{i}$ for each i with $1 \leq i \leq k$, then $Y \succeq X$.
- If a relation \succeq is representable by a probability measure, then \succeq must satisfy cancellation for any k.
- Scott [Sco64]: any \succeq relation satisfying nonnegativity, nontriviality, totality and cancellation for any $k \in \mathbb{N}$ determines a probability measure.

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

- W is a non-empty set of worlds.

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.

Representing Belief as Truth in a Neighbourhood

 An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

Representing Belief as Truth in a Neighbourhood

 An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} .
$$

Representing Belief as Truth in a Neighbourhood

 An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\begin{aligned}
& \text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} . \\
& \text { (n) }[w]_{i} \in N_{i}(w) .
\end{aligned}
$$

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.
(c) $\forall X \in N_{i}(w): X \subseteq[w]_{i}$.
(n) $[w]_{i} \in N_{i}(w)$.
(a) $\forall v \in[w]_{i}: N_{i}(v)=N_{i}(w)$.

Representing Belief as Truth in a Neighbourhood

 An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\begin{aligned}
& \text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} . \\
& \text { (n) }[w]_{i} \in N_{i}(w) . \\
& \text { (a) } \forall v \in[w]_{i}: N_{i}(v)=N_{i}(w) . \\
& \text { (m) } \forall X \subseteq Y \subseteq[w]_{i}: \text { if } X \in N_{i}(w) \text {, then } Y \in \\
& \\
& \\
& N_{i}(w) .
\end{aligned}
$$

Representing Belief as Truth in a Neighbourhood

 An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\begin{aligned}
& \text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} . \\
& \text { (n) }[w]_{i} \in N_{i}(w) . \\
& \text { (a) } \forall v \in[w]_{i}: N_{i}(v)=N_{i}(w) . \\
& \text { (m) } \forall X \subseteq Y \subseteq[w]_{i}: \text { if } X \in N_{i}(w) \text {, then } Y \in \\
& \\
& N_{i}(w) . \\
& \text { (d) } \forall X \in N_{i}(w),[w]_{i}-X \notin N_{i}(w) .
\end{aligned}
$$

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\begin{aligned}
& \text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} . \\
& \text { (n) }[w]_{i} \in N_{i}(w) . \\
& \text { (a) } \forall v \in[w]_{i}: N_{i}(v)=N_{i}(w) . \\
& \text { (m) } \forall X \subseteq Y \subseteq[w]_{i}: \text { if } X \in N_{i}(w) \text {, then } Y \in \\
& \\
& N_{i}(w) . \\
& \text { (d) } \forall X \in N_{i}(w),[w]_{i}-X \notin N_{i}(w) . \\
& \text { (sc) } \forall X, Y \subseteq[w]_{i}: \text { if }[w]_{i}-X \notin N_{i}(w) \text { and } X \subsetneq Y, \\
& \text { then } Y \in N_{i}(w) .
\end{aligned}
$$

Representing Belief as Truth in a Neighbourhood

An Epistemic Neighbourhood Model \mathcal{M} is a tuple (W, \sim, N, V) where

- W is a non-empty set of worlds.
- \sim is a function that assigns to every agent $i \in A g$ an equivalence relation \sim_{i} on W. We use $[W]_{i}$ for the \sim_{i} class of w, i.e., for the set $\left\{v \in W \mid w \sim_{i} v\right\}$.
- N is a function that assigns to every agent $i \in A g$ and world $w \in W$ a collection $N_{i}(w)$ of sets of worlds-each such set called a neighbourhood of w-subject to the following conditions.

$$
\begin{aligned}
& \text { (c) } \forall X \in N_{i}(w): X \subseteq[w]_{i} . \\
& \text { (n) }[w]_{i} \in N_{i}(w) . \\
& \text { (a) } \forall v \in[w]_{i}: N_{i}(v)=N_{i}(w) . \\
& \text { (m) } \forall X \subseteq Y \subseteq[w]_{i}: \text { if } X \in N_{i}(w) \text {, then } Y \in \\
& \\
& N_{i}(w) . \\
& \text { (d) } \forall X \in N_{i}(w),[w]_{i}-X \notin N_{i}(w) . \\
& \text { (sc) } \forall X, Y \subseteq[w]_{i}: \text { if }[w]_{i}-X \notin N_{i}(w) \text { and } X \subsetneq Y, \\
& \text { then } Y \in N_{i}(w) .
\end{aligned}
$$

Language and Truth

Language and Truth

$$
\phi::=\top|p| \neg \phi|(\phi \wedge \phi)| K_{i} \phi \mid B_{i} \phi .
$$

Language and Truth

$$
\phi::=\top|p| \neg \phi|(\phi \wedge \phi)| K_{i} \phi \mid B_{i} \phi .
$$

$\mathcal{M}, \boldsymbol{w} \models K_{i} \phi \quad$ iff \quad for all $v \in[w]_{i}: \mathcal{M}, v \vDash \phi$.

Language and Truth

$$
\phi::=\top|p| \neg \phi|(\phi \wedge \phi)| K_{i} \phi \mid B_{i} \phi .
$$

$\mathcal{M}, \boldsymbol{w} \models K_{i} \phi \quad$ iff \quad for all $v \in[w]_{i}: \mathcal{M}, v \vDash \phi$.
$\mathcal{M}, w \models B_{i} \phi \quad$ iff \quad for some $X \in N_{i}(w)$
it holds that $X=\left\{v \in[w]_{i} \mid \mathcal{M}, v \models \phi\right\}$.

Neighbourhood Belief Not Closed Under Conjunction

$$
N(w)=N(v)=N(u)=\{\{w, v\},\{v, u\},\{w, u\},\{w, v, u\}\}
$$

Neighbourhood Belief Not Closed Under Conjunction

$$
N(w)=N(v)=N(u)=\{\{w, v\},\{v, u\},\{w, u\},\{w, v, u\}\}
$$

- In all worlds, $K(p \vee q \vee r)$ is true.

Neighbourhood Belief Not Closed Under Conjunction

- In all worlds, $K(p \vee q \vee r)$ is true.
- In all worlds $B \neg p, B \neg q, B \neg r$ are true.

Neighbourhood Belief Not Closed Under Conjunction

- In all worlds, $K(p \vee q \vee r)$ is true.
- In all worlds $B \neg p, B \neg q, B \neg r$ are true.
- In all worlds $B(\neg p \wedge \neg q), B(\neg p \wedge \neg r), B(\neg q \wedge \neg r)$ are false.

ED Calculus for Epistemic Neighbourhood Logic

(Taut) All instances of propositional tautologies
(Dist-K) $\quad K_{i}(\phi \rightarrow \psi) \rightarrow K_{i} \phi \rightarrow K_{i} \psi$
(T) $\quad K_{i} \phi \rightarrow \phi$
(PI-K) $\quad K_{i} \phi \rightarrow K_{i} K_{i} \phi$
$(\mathrm{NI}-\mathrm{K}) \quad \neg K_{i} \phi \rightarrow K_{i} \neg K_{i} \phi$
(N) $\quad B_{i} \top$.
(PI-KB) $\quad B_{i} \phi \rightarrow K_{i} B_{i} \phi$
(NI-KB) $\quad \neg B_{i} \phi \rightarrow K_{i} \neg B_{i} \phi$
(M) $\quad K_{i}(\phi \rightarrow \psi) \rightarrow B_{i} \phi \rightarrow B_{i} \psi$
(D) $\quad B_{i} \phi \rightarrow \check{B}_{i} \phi$.
(SC) $\quad \check{B}_{i} \phi \wedge \check{K}_{i}(\neg \phi \wedge \psi) \rightarrow B_{i}(\phi \vee \psi)$

$$
\frac{\phi \rightarrow \psi \quad \phi}{\psi}(\mathrm{MP}) \quad \frac{\phi}{K_{i} \phi}(\text { Nec-K })
$$

Soundness and Completeness

Theorem
ED calculus is sound and complete for Epistemic Neighbourhood Models.

Epistemic Weight Models

An epistemic weight model for agents I and basic propositions P is a tuple $\mathcal{M}=(W, R, L, V)$ where

- W is a non-empty countable set of worlds,
- R assigns to every agent $i \in I$ an equivalence relation \sim_{i} on W,
- L assigns to every $i \in I$ a function \mathbb{L}_{i} from W to \mathbb{Q}^{+}(the positive rationals), subject to the following boundedness condition (*).

$$
\begin{equation*}
\forall i \in N w \in W \sum_{u \in[w]_{i}} \mathbb{L}_{i}(u)<\infty \tag{*}
\end{equation*}
$$

where $[w]_{i}$ is the cell of w in the partition induced by \sim_{i}.

- V assigns to every $w \in W$ a subset of P,

Truth in Weight Models

Truth in Weight Models

- Use $\mathbb{L}_{i}(X)$ for $\sum_{x \in X} \mathbb{L}_{i}(x)$.

Truth in Weight Models

- Use $\mathbb{L}_{i}(X)$ for $\sum_{x \in X} \mathbb{L}_{i}(x)$.
$\mathcal{M}, \boldsymbol{w} \models K_{i} \phi$ iff for all $v \in[w]_{i}: \mathcal{M}, \boldsymbol{v} \models \phi$.

Truth in Weight Models

- Use $\mathbb{L}_{i}(X)$ for $\sum_{x \in X} \mathbb{L}_{i}(x)$.
$\mathcal{M}, \boldsymbol{w} \models K_{i} \phi$ iff for all $v \in[w]_{i}: \mathcal{M}, \boldsymbol{v} \models \phi$.

$$
\begin{aligned}
& \mathcal{M}, w \models B_{i} \phi \text { iff } \\
& \mathbb{L}_{i}\left(\left\{v \in[w]_{i} \mid \mathcal{M}, v \models \phi\right\}\right)>\mathbb{L}_{i}\left(\left\{v \in[w]_{i} \mid \mathcal{M}, v \models \neg \phi\right\}\right) .
\end{aligned}
$$

Truth in Weight Models

- Use $\mathbb{L}_{i}(X)$ for $\sum_{x \in X} \mathbb{L}_{i}(x)$.
$\mathcal{M}, w \models K_{i} \phi$ iff for all $v \in[w]_{i}: \mathcal{M}, v \models \phi$.

$$
\begin{gathered}
\mathcal{M}, w \models B_{i} \phi \text { iff } \\
\mathbb{L}_{i}\left(\left\{v \in[w]_{i} \mid \mathcal{M}, v \models \phi\right\}\right)>\mathbb{L}_{i}\left(\left\{v \in[w]_{i} \mid \mathcal{M}, v \models \neg \phi\right\}\right) .
\end{gathered}
$$

- Theorem

ED calculus is sound for epistemic weight models.

Agreement, Incompleteness

Agreement, Incompleteness

- Definition (Agreement)

Let $\mathcal{M}=(W, R, N, V)$ be a neighbourhood model and let L be a weight function for \mathcal{M}. Then L agrees with \mathcal{M} if it holds for all agents i and all $w \in W$ that

$$
X \in N_{i}(w) \text { iff } \mathbb{L}_{i}(X)>\mathbb{L}_{i}\left([w]_{i}-X\right)
$$

Agreement, Incompleteness

- Definition (Agreement)

Let $\mathcal{M}=(W, R, N, V)$ be a neighbourhood model and let L be a weight function for \mathcal{M}. Then L agrees with \mathcal{M} if it holds for all agents i and all $w \in W$ that

$$
X \in N_{i}(w) \text { iff } \mathbb{L}_{i}(X)>\mathbb{L}_{i}\left([w]_{i}-X\right) .
$$

- Theorem

There exists an epistemic neighbourhood model \mathcal{M} that has no agreeing weight function.

Incompleteness: Example from the Fano plane

Incompleteness: Example from the Fano plane

- Let Prop $:=\{a, b, c, d, e, f, g\}$. Let $\mathcal{X}=\{a b c, c d e, a f e, a g d, c g f, e g b, b d f\}$ (the set of lines in the Fano plane)

Incompleteness: Example from the Fano plane

- Let Prop $:=\{a, b, c, d, e, f, g\}$. Let $\mathcal{X}=\{a b c, c d e, a f e, a g d, c g f, e g b, b d f\}$ (the set of lines in the Fano plane)
- No complement of a line contains a line.

Incompleteness: Example from the Fano plane

- Let Prop $:=\{a, b, c, d, e, f, g\}$. Let $\mathcal{X}=\{a b c, c d e, a f e, a g d, c g f, e g b, b d f\}$ (the set of lines in the Fano plane)
- No complement of a line contains a line.
- If one extends the complement of a line with another point, the result will contain a line.

Incompleteness (ctd)

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, a c e g\}
\end{aligned}
$$

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, a c e g\}
\end{aligned}
$$

- The neighbourhoods \mathcal{Y} are sets that contain at least one line:

$$
\mathcal{Y}:=\{Y \mid \exists X \in \mathcal{X}: X \subseteq Y \subseteq W\} .
$$

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, a c e g\}
\end{aligned}
$$

- The neighbourhoods \mathcal{Y} are sets that contain at least one line:

$$
\mathcal{Y}:=\{Y \mid \exists X \in \mathcal{X}: X \subseteq Y \subseteq W\}
$$

- Let $\mathcal{M}:=(W, R, N, V)$ be defined by $W:=$ Prop, $R=W \times W, V(w)=\{w\}$, and for all $w \in W, N(w)=\mathcal{Y}$.

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, a c e g\}
\end{aligned}
$$

- The neighbourhoods \mathcal{Y} are sets that contain at least one line:

$$
\mathcal{Y}:=\{Y \mid \exists X \in \mathcal{X}: X \subseteq Y \subseteq W\}
$$

- Let $\mathcal{M}:=(W, R, N, V)$ be defined by $W:=$ Prop, $R=W \times W, V(w)=\{w\}$, and for all $w \in W, N(w)=\mathcal{Y}$.
- Check that $\mathcal{X}^{\prime} \cap \mathcal{Y}=\emptyset$. This shows that condition (d) holds.

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, \text { aceg }\} .
\end{aligned}
$$

- The neighbourhoods \mathcal{Y} are sets that contain at least one line:

$$
\mathcal{Y}:=\{Y \mid \exists X \in \mathcal{X}: X \subseteq Y \subseteq W\}
$$

- Let $\mathcal{M}:=(W, R, N, V)$ be defined by $W:=$ Prop, $R=W \times W, V(w)=\{w\}$, and for all $w \in W, N(w)=\mathcal{Y}$.
- Check that $\mathcal{X}^{\prime} \cap \mathcal{Y}=\emptyset$. This shows that condition (d) holds.
- Condition (sc) holds because adding a point to any member of \mathcal{X}^{\prime} yields a neighbourhood.

Incompleteness (ctd)

- The members of \mathcal{X}^{\prime} are the maximal sets that do not contain a line:

$$
\begin{aligned}
\mathcal{X}^{\prime} & :=\{\overline{a b c}, \overline{c d e}, \overline{a f e}, \overline{a g d}, \overline{c g f}, \overline{e g b}, \overline{b d f}\} \\
& =\{d e f g, a b f g, b c d g, b c e f, a b d e, a c d f, a c e g\}
\end{aligned}
$$

- The neighbourhoods \mathcal{Y} are sets that contain at least one line:

$$
\mathcal{Y}:=\{Y \mid \exists X \in \mathcal{X}: X \subseteq Y \subseteq W\}
$$

- Let $\mathcal{M}:=(W, R, N, V)$ be defined by $W:=$ Prop, $R=W \times W, V(w)=\{w\}$, and for all $w \in W, N(w)=\mathcal{Y}$.
- Check that $\mathcal{X}^{\prime} \cap \mathcal{Y}=\emptyset$. This shows that condition (d) holds.
- Condition (sc) holds because adding a point to any member of \mathcal{X}^{\prime} yields a neighbourhood.
- \mathcal{M} is a neighbourhood model.

Ctd

- Suppose there exists a weight function \mathbb{L} that agrees with M.

Ctd

- Suppose there exists a weight function \mathbb{L} that agrees with M.
- Since each letter $p \in W$ occurs in exactly three of the seven members of \mathcal{X} :

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)=\sum_{p \in W} 3 \cdot \mathbb{L}(\{p\})
$$

Ctd

- Suppose there exists a weight function \mathbb{L} that agrees with M.
- Since each letter $p \in W$ occurs in exactly three of the seven members of \mathcal{X} :

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)=\sum_{p \in W} 3 \cdot \mathbb{L}(\{p\})
$$

- Since each letter $p \in W$ occurs in exactly four of the seven members of \mathcal{X}^{\prime} :

$$
\sum_{X \in \mathcal{X}^{\prime}} \mathbb{L}(X)=\sum_{p \in W} 4 \cdot \mathbb{L}(\{p\})
$$

Ctd

- Suppose there exists a weight function \mathbb{L} that agrees with \mathcal{M}.
- Since each letter $p \in W$ occurs in exactly three of the seven members of \mathcal{X} :

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)=\sum_{p \in W} 3 \cdot \mathbb{L}(\{p\})
$$

- Since each letter $p \in W$ occurs in exactly four of the seven members of \mathcal{X}^{\prime} :

$$
\sum_{X \in \mathcal{X}^{\prime}} \mathbb{L}(X)=\sum_{p \in W} 4 \cdot \mathbb{L}(\{p\})
$$

- From the fact that $\mathbb{L}(X)>\mathbb{L}(\bar{X})$ for all members X of \mathcal{X} we get:

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)>\sum_{X \in \mathcal{X}} \mathbb{L}(\bar{X})=\sum_{X \in \mathcal{X}^{\prime}} \mathbb{L}(X)
$$

Ctd

- Suppose there exists a weight function \mathbb{L} that agrees with \mathcal{M}.
- Since each letter $p \in W$ occurs in exactly three of the seven members of \mathcal{X} :

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)=\sum_{p \in W} 3 \cdot \mathbb{L}(\{p\})
$$

- Since each letter $p \in W$ occurs in exactly four of the seven members of \mathcal{X}^{\prime} :

$$
\sum_{X \in \mathcal{X}^{\prime}} \mathbb{L}(X)=\sum_{p \in W} 4 \cdot \mathbb{L}(\{p\})
$$

- From the fact that $\mathbb{L}(X)>\mathbb{L}(\bar{X})$ for all members X of \mathcal{X} we get:

$$
\sum_{X \in \mathcal{X}} \mathbb{L}(X)>\sum_{X \in \mathcal{X}} \mathbb{L}(\bar{X})=\sum_{X \in \mathcal{X}^{\prime}} \mathbb{L}(X)
$$

- Contradiction. So no such \mathbb{L} exists.

Epistemic Comparison Logic

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \psi$ for $\Phi \leq_{i} \psi \wedge \neg \Psi \leq_{i} \Phi$.

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \Psi$ for $\Phi \leq_{i} \Psi \wedge \neg \Psi \leq_{i} \Phi$.
- $\Phi=_{i} \psi$ for $\Phi \leq_{i} \Psi \wedge \Psi \leq_{i} \Phi$.

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \Psi$ for $\Phi \leq_{i} \psi \wedge \neg \Psi \leq_{i} \Phi$.
- $\Phi=_{i} \Psi$ for $\Phi \leq_{i} \Psi \wedge \Psi \leq_{i} \Phi$.
- $B_{i} \phi$ for $(\neg \phi)<{ }_{i} \phi$,

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \psi$ for $\Phi \leq_{i} \psi \wedge \neg \Psi \leq_{i} \Phi$.
- $\Phi=_{i} \Psi$ for $\Phi \leq_{i} \Psi \wedge \Psi \leq_{i} \Phi$.
- $B_{i} \phi$ for $(\neg \phi)<_{i} \phi$,
- $\check{B}_{i} \phi$ for $(\neg \phi) \leq_{i} \phi$ ("Belief as willingness to bet"),

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \psi$ for $\Phi \leq_{i} \psi \wedge \neg \Psi \leq_{i} \Phi$.
- $\Phi=_{i} \Psi$ for $\Phi \leq_{i} \Psi \wedge \Psi \leq_{i} \Phi$.
- $B_{i} \phi$ for $(\neg \phi)<_{i} \phi$,
- $\check{B}_{i} \phi$ for $(\neg \phi) \leq_{i} \phi$ ("Belief as willingness to bet"),
- $K_{i} \phi$ for $T \leq_{i} \phi$,

Epistemic Comparison Logic

- Use \oplus as a list-forming operation for formulas.
- $\phi_{1} \oplus \cdots \oplus \phi_{n}$ should be thought of as the n-element formula list $\left(\phi_{1}, \ldots, \phi_{n}\right)$.
- Use Φ to range over formula lists, and $\phi \oplus \Phi$ for the extension of ϕ at the front with ϕ.

Definition (EC Language)

$$
\begin{aligned}
\phi & ::=\top|p| \neg \phi|\phi \wedge \phi| \Phi \leq_{i} \Phi \\
\Phi & ::=\phi \mid \phi \oplus \Phi
\end{aligned}
$$

Abbreviations:

- $\Phi<_{i} \psi$ for $\Phi \leq_{i} \psi \wedge \neg \psi \leq_{i} \Phi$.
- $\Phi=_{i} \Psi$ for $\Phi \leq_{i} \Psi \wedge \Psi \leq_{i} \Phi$.
- $B_{i} \phi$ for $(\neg \phi)<_{i} \phi$,
- $\check{B}_{i} \phi$ for $(\neg \phi) \leq_{i} \phi$ ("Belief as willingness to bet"),
- $K_{i} \phi$ for $T \leq_{i} \phi$,
- $\check{K}_{i} \phi$ for $\perp<_{i} \phi$ ("Knowledge as certainty").

Truth for EC Logic

Let $\mathcal{M}=(W, R, L, V)$ be an epistemic weight model, let $w \in W$.

$$
\begin{array}{lll}
\llbracket \phi \rrbracket_{\mathcal{M}} & :=\{w \in W \mid \mathcal{M}, w \models \phi\} \\
\llbracket \phi \rrbracket_{\mathcal{M}}^{w, i} & := & \llbracket \phi \rrbracket_{\mathcal{M}} \cap[w]_{i} \\
\mathbb{L}_{w, i} \phi & := & \mathbb{L}_{i}\left(\llbracket \phi \rrbracket_{\mathcal{M}}^{w, i}\right) \\
\mathcal{M}, w \models \top & & \text { always } \\
\mathcal{M}, w \models \neg \phi & \text { iff } & \text { not } \mathcal{M}, w \models \phi \\
\mathcal{M}, w \models \phi_{1} \wedge \phi_{2} & \text { iff } & \mathcal{M}, w \models \phi_{1} \text { and } \mathcal{M}, w \models \phi_{2} \\
\mathcal{M}, w \models \Phi \leq_{i} \psi & \text { iff } & \sum_{\phi \in \Phi} \mathbb{L}_{w, i} \phi \leq \sum_{\psi \in \Psi} \mathbb{L}_{w, i} \psi
\end{array}
$$

$\sum_{\phi \in \Phi}$ sums over occurrences of ϕ in the list Φ.
Weight function and epistemic accessibility relation together determine probability:

$$
P_{w, i}^{\mathcal{M}} \phi:=\frac{\mathbb{L}_{w, i} \phi}{\mathbb{L}_{w, i} \top}\left(=\frac{\mathbb{L}_{i}\left(\llbracket \phi \rrbracket_{\mathcal{M}} \cap[w]_{i}\right)}{\mathbb{L}_{i}\left([w]_{i}\right)}\right)
$$

EC Calculus

Taut instances of propositional tautologies
ProbT $\quad\left(T \leq_{i} \phi\right) \rightarrow \phi$
Problmpl $\quad \top \leq_{i}(\phi \rightarrow \psi) \rightarrow\left(\phi \leq_{i} \psi\right)$
PropPos $\quad\left(\Phi \leq_{i} \psi\right) \rightarrow T \leq_{i}\left(\Phi \leq_{i} \psi\right)$
PropNeg $\quad\left(\Phi>_{i} \psi\right) \rightarrow \top \leq_{i}\left(\Phi>_{i} \psi\right)$
PropAdd $\quad(\phi \wedge \psi) \oplus(\phi \wedge \neg \psi)={ }_{i} \phi$
Tran
$\left(\Phi \leq_{i} \Psi\right) \wedge\left(\Psi \leq_{i} \equiv\right) \rightarrow\left(\Phi \leq_{i}\right.$ 三 $)$
Tot $\left(\Phi \leq_{i} \Psi\right) \vee\left(\Psi \leq_{i} \Phi\right)$
ComL $\quad\left(\Phi_{1} \oplus \Phi_{2} \leq_{i} \psi\right) \leftrightarrow\left(\Phi_{2} \oplus \Phi_{1} \leq_{i} \psi\right)$
ComR $\quad\left(\Phi \leq_{i} \Psi_{1} \oplus \Psi_{2}\right) \leftrightarrow\left(\Phi \leq_{i} \Psi_{2} \oplus \Psi_{1}\right)$
Add $\quad\left(\Phi_{1} \leq_{i} \Psi_{1}\right) \wedge\left(\Phi_{2} \leq_{i} \Psi_{2}\right) \rightarrow\left(\Phi_{1} \oplus \Phi_{2} \leq_{i} \Psi_{1} \oplus \Psi_{2}\right)$
Succ $\quad\left(\Phi \oplus \top \leq_{i} \Psi \oplus \top\right) \rightarrow\left(\Phi \leq_{i} \psi\right)$
MP From $\vdash \phi$ and $\vdash \phi \rightarrow \psi$ derive $\vdash \psi$
NEC From $\vdash \phi$ derive $\vdash T \leq_{i} \phi$

Completeness of EC Calculus

Theorem (Completeness of EC Logic)
The EC calculus is complete for epistemic weight models.

Completeness of EC Calculus

Theorem (Completeness of EC Logic)

The EC calculus is complete for epistemic weight models.

- From Epistemic Probability Models to Epistemic Neighbourhood Models:
If $\mathcal{M}=(W, R, L, V)$ is an epistemic weight model, then \mathcal{M}^{\bullet} is the tuple (W, R, N, V) given by replacing the weight function by a function N, where

$$
N_{i}(w)=\left\{X \subseteq[w]_{i} \mid \mathbb{L}_{i}(X)>\mathbb{L}_{i}\left([w]_{i}-X\right)\right\} .
$$

Completeness of EC Calculus

Theorem (Completeness of EC Logic)

The EC calculus is complete for epistemic weight models.

- From Epistemic Probability Models to Epistemic Neighbourhood Models:
If $\mathcal{M}=(W, R, L, V)$ is an epistemic weight model, then \mathcal{M}^{\bullet} is the tuple (W, R, N, V) given by replacing the weight function by a function N, where

$$
N_{i}(w)=\left\{X \subseteq[w]_{i} \mid \mathbb{L}_{i}(X)>\mathbb{L}_{i}\left([w]_{i}-X\right)\right\}
$$

Theorem
For any epistemic weight model \mathcal{M} it holds that \mathcal{M}^{\bullet} is a neighbourhood model.

Completeness of EC Calculus

Theorem (Completeness of EC Logic)

The EC calculus is complete for epistemic weight models.

- From Epistemic Probability Models to Epistemic Neighbourhood Models:
If $\mathcal{M}=(W, R, L, V)$ is an epistemic weight model, then \mathcal{M}^{\bullet} is the tuple (W, R, N, V) given by replacing the weight function by a function N, where

$$
N_{i}(w)=\left\{X \subseteq[w]_{i} \mid \mathbb{L}_{i}(X)>\mathbb{L}_{i}\left([w]_{i}-X\right)\right\}
$$

Theorem
For any epistemic weight model \mathcal{M} it holds that \mathcal{M}^{\bullet} is a neighbourhood model.

Theorem

For all ED formulas ϕ, for all epistemic probability models \mathcal{M}, for all worlds w of $\mathcal{M}: \mathcal{M}^{\bullet}, w \models \phi$ iff $\mathcal{M}, w=\phi$.

The Disease Problem

The Disease Problem

- You are from a population with a statistical chance of 1 in 100 of having disease D.

The Disease Problem

- You are from a population with a statistical chance of 1 in 100 of having disease D.
- Screening test for this has false positive rate of 0.2 and false negative rate of 0.1.

The Disease Problem

- You are from a population with a statistical chance of 1 in 100 of having disease D.
- Screening test for this has false positive rate of 0.2 and false negative rate of 0.1.
- You tested positive (T).

The Disease Problem

- You are from a population with a statistical chance of 1 in 100 of having disease D.
- Screening test for this has false positive rate of 0.2 and false negative rate of 0.1.
- You tested positive (T).
- Should you believe you have disease D?

Weight Model for the Disease Problem

$d t 0.9-d \bar{t} 0.1$

$\bar{d} t 0.2 * 99-\overline{d t} 0.8 * 99$

Weight Model for the Disease Problem
$d t 0.9-d \bar{t} 0.1$

$\bar{d} t 0.2 * 99-\overline{d t} 0.8 * 99$

Weight Model for the Disease Problem

$d t 0.9-d \bar{t} 0.1$

Weight Model for the Disease Problem

$d t 0.9-d \bar{t} 0.1$

$\bar{d} t 0.2 * 99-\overline{d t} 0.8 * 99$

$\bar{d} t 0.2 * 99$

$$
P(d)=\frac{0.9}{0.9+0.2 * 99}=\frac{9}{207}=\frac{1}{23}
$$

- Extend the EC language with an operator $[\pm \phi]$, for publicly announcing the value of ϕ. This maps \mathcal{M} to $\mathcal{M}^{ \pm \phi}$.
- Extend the EC language with an operator $[\pm \phi]$, for publicly announcing the value of ϕ. This maps \mathcal{M} to $\mathcal{M}^{ \pm \phi}$.
- If $\mathcal{M}=(W, \sim, L, V)$ and ϕ is an EC formula, then $\mathcal{M}^{ \pm \phi}=\left(W^{ \pm \phi}, \sim^{ \pm \phi}, L^{ \pm \phi}, V^{ \pm \phi}\right)$ where:
- $W^{ \pm \phi}=W$,
- $\sim_{i}^{ \pm \phi}=\left\{(w, v) \in W^{2} \mid w \sim_{i} v\right.$ and $\mathcal{M}, w \models \phi$ iff $\left.\mathcal{M}, v \models \phi\right\}$.
- $L^{ \pm \phi}=L$,
- $V^{ \pm \phi}=V$.
- Extend the EC language with an operator $[\pm \phi]$, for publicly announcing the value of ϕ. This maps \mathcal{M} to $\mathcal{M}^{ \pm \phi}$.
- If $\mathcal{M}=(W, \sim, L, V)$ and ϕ is an EC formula, then $\mathcal{M}^{ \pm \phi}=\left(W^{ \pm \phi}, \sim^{ \pm \phi}, L^{ \pm \phi}, V^{ \pm \phi}\right)$ where:
- $W^{ \pm \phi}=W$,
- $\sim_{i}^{ \pm \phi}=\left\{(w, v) \in W^{2} \mid w \sim_{i} v\right.$ and $\mathcal{M}, w \models \phi$ iff $\left.\mathcal{M}, v \models \phi\right\}$.
- $L^{ \pm \phi}=L$,
- $V^{ \pm \phi}=V$.
- The operation $[\pm \phi]$ cuts the i-accessibility links between ϕ and $\neg \phi$ worlds, for all agents i.
- Extend the EC language with an operator $[\pm \phi]$, for publicly announcing the value of ϕ. This maps \mathcal{M} to $\mathcal{M}^{ \pm \phi}$.
- If $\mathcal{M}=(W, \sim, L, V)$ and ϕ is an EC formula, then $\mathcal{M}^{ \pm \phi}=\left(W^{ \pm \phi}, \sim^{ \pm \phi}, L^{ \pm \phi}, V^{ \pm \phi}\right)$ where:
- $W^{ \pm \phi}=W$,
- $\sim_{i}^{ \pm \phi}=\left\{(w, v) \in W^{2} \mid w \sim_{i} v\right.$ and $\mathcal{M}, w \models \phi$ iff $\left.\mathcal{M}, v \models \phi\right\}$.
- $L^{ \pm \phi}=L$,
- $V^{ \pm \phi}=V$.
- The operation $[\pm \phi]$ cuts the i-accessibility links between ϕ and $\neg \phi$ worlds, for all agents i.
- After the update with t the probability of d equals $\frac{0.9}{0.9+0.2 * 99}=\frac{9}{207}=\frac{1}{23}$.
- Extend the EC language with an operator $[\pm \phi]$, for publicly announcing the value of ϕ. This maps \mathcal{M} to $\mathcal{M}^{ \pm \phi}$.
- If $\mathcal{M}=(W, \sim, L, V)$ and ϕ is an EC formula, then $\mathcal{M}^{ \pm \phi}=\left(W^{ \pm \phi}, \sim^{ \pm \phi}, L^{ \pm \phi}, V^{ \pm \phi}\right)$ where:
- $W^{ \pm \phi}=W$,
- $\sim_{i}^{ \pm \phi}=\left\{(w, v) \in W^{2} \mid w \sim_{i} v\right.$ and $\mathcal{M}, w \models \phi$ iff $\left.\mathcal{M}, v \models \phi\right\}$.
- $L^{ \pm \phi}=L$,
- $V^{ \pm \phi}=V$.
- The operation $[\pm \phi]$ cuts the i-accessibility links between ϕ and $\neg \phi$ worlds, for all agents i.
- After the update with t the probability of d equals $\frac{0.9}{0.9+0.2 * 99}=\frac{9}{207}=\frac{1}{23}$.
- After the update with $\neg t$ the probability of d equals $\frac{0.1}{0.1+0.8 * 88}=\frac{1}{704}$.

Compare with Applying Bayes' Rule

$$
\begin{aligned}
P(D \mid T)=\frac{P(T \mid D) P(D)}{P(T)}=\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P(T \mid \neg D) P(\neg D)} \\
P(T \mid D)=0.9, P(D)=0.01, P(\neg D)=0.99, P(T \mid \neg D)=0.2 \\
P(D \mid T)=\frac{1}{23} .
\end{aligned}
$$

Further Work

Further Work

- Develop poor man's Bayesian belief: define a map from neighbourhood models \mathcal{M} to updated neighbourhood models $\mathcal{M}^{ \pm \phi}$, and axiomatize the resulting logic.

Further Work

- Develop poor man's Bayesian belief: define a map from neighbourhood models \mathcal{M} to updated neighbourhood models $\mathcal{M}^{ \pm \phi}$, and axiomatize the resulting logic.
- Extend the EC calculus to a full blown probabilistic logic of communication and change.

Further Work

- Develop poor man's Bayesian belief: define a map from neighbourhood models \mathcal{M} to updated neighbourhood models $\mathcal{M}^{ \pm \phi}$, and axiomatize the resulting logic.
- Extend the EC calculus to a full blown probabilistic logic of communication and change.
- Implement model checkers for probabilistic update logic.

Further Work

- Develop poor man's Bayesian belief: define a map from neighbourhood models \mathcal{M} to updated neighbourhood models $\mathcal{M}^{ \pm \phi}$, and axiomatize the resulting logic.
- Extend the EC calculus to a full blown probabilistic logic of communication and change.
- Implement model checkers for probabilistic update logic.
- Extend the logic to capture the distinction between risk and uncertainty [Kni21].

References

Andreea Christina Achimescu．
Games and logics for informational cascades． Master＇s thesis，ILLC，Amsterdam，February 2014.

目 J．van Benthem．
Conditional probability meets update logic． Journal of Logic，Language and Information， 12（4）：409－421， 2003.

Johan van Benthem，David Fernández－Duque，and Eric Pacuit．
Evidence logic：A new look at neighborhood structures． Annals of Pure and Applied Logic，165（1）：106－133， 2014.

囲 J．van Benthem，J．Gerbrandy，and B．Kooi．
Dynamic update with probabilities．
Studia Logica，93：67－96， 2009.
围 James P．Delgrande and Bryan Renne．
The logic of qualitative probability．

In Proceedings of the Twenty-Fourth International
Conference on Artificial Intelligence (IJCAI 2015), pages 2904-2910, Buenos Aires, 2015.

R Jan van Eijck and Bryan Renne.
Belief as willingness to bet.
E-print, arXiv.org, December 2014.
arXiv:1412.5090v1 [cs.LO].
嗇 Jan van Eijck and François Schwarzentruber.
Epistemic probability logic simplified.
In Rajeev Goré, Barteld Kooi, and Agi Kurucz, editors, Advances in Modal Logic, Volume 10, pages 158-177, 2014.

Ronald Fagin, Joseph Y Halpern, and Nimrod Megiddo.
A logic for reasoning about probabilities.
Information and computation, 87(1):78-128, 1990.
圊 Bruno de Finetti.
La prevision: ses lois logiques, se sources subjectives.
Annales de l'Institut Henri Poincaré, 7:1-68, 1937.

Translated into English and reprinted in Kyburg and
Smokler，Studies in Subjective Probability（Huntington，NY： Krieger；1980）．

固 Bruno de Finetti．
La＂logica del plausibile＂secondo la concezione di polya．
In Atti della XLII Riunione，Societa Italiana per il Progresso delle Scienze，pages 227－236， 1951.

圊 A．Herzig．
Modal probability，belief，and actions．
Fundamenta Informaticae，27：323－344， 2003.
國 Dick de Jongh and Sujata Ghosh．
Comparing strengths of belief explicitly．
Logic Journal of the IGPL，21：488－514， 2013.
E F．H．Knight．
Risk，Uncertainty，and Profit．
Hart，Schaffner \＆Marx；Houghton Mifflin Company，
Boston，MA， 1921.

围 Barteld P．Kooi．
Knowledge，Chance，and Change．
PhD thesis，Groningen University， 2003.
雷 Charles H．Kraft，John W．Pratt，and A．Seidenberg． Intuitive probability on finite sets．
The Annals of Mathematical Statistics，30（2）：408－419， 1959.
－Louis Narens．
Theories of Probability．
World Scientific， 2007.
居 Dana Scott．
Measurement structures and linear equalities． Journal of Mathematical Psychology，1：233－247， 1964.

