
Belief, Uncertainty, and Probability

Jan van Eijck
CWI & ILLC, Amsterdam

Qualitative and Quantitative Methods in Formal Epistemology

Nov 20, 2014

Abstract

For reasoning about uncertain situations, we have probability theory, and we have logics of
knowledge and belief. How does elementary probability theory relate to epistemic logic and
the logic of belief? The talk will argue that uncertainty caused by ignorance and uncertainty
caused by physical indeterminism can be handled both by probability theory and by the logic of
knowledge and belief, and that these two perspectives are systematically related, even intimately
connected.



How are Logic and Probability Theory Related?

• Logic = Reasoning about Certainty

• Probability Theory = Reasoning about Uncertainty

• Epistemic or Bayesian probability can be viewed as an extension
of propositional logic with hypotheses, i.e., basic propositions
whose truth or falsity is uncertain.

• But logic has something to say, too, about reasoning under un-
certainty: epistemic logic, doxastic logic, default logic, logic of
conditionals . . .

• Frank Ramsey : “In this Essay the Theory of Probability is taken
as a branch of logic, the logic of partial belief and inconclusive
argument [. . . ]” [Ram31].
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Christiaan Huygens, 1629–1695
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1660
[Huy60]





Huygens’ Proposal for the Foundations of Probability

“Ick neeme tot beyder fondament, dat in het speelen de kansse, die
yemant ergens toe heeft, even soo veel weerdt is als het geen, het
welck hebbende hy weder tot deselfde kansse kan geraecken met
rechtmatigh spel, dat is, daer in niemandt verlies geboden werdt. By
exempel. So yemandt sonder mijn weeten in d’eene handt 3 schellin-
gen verbergt, en in d’ander 7 schellingen, ende my te kiesen geeft
welck van beyde ick begeere te hebben, ick segge dit my even soo
veel weerdt te zijn, als of ick 5 schellingen seecker hadde. Om dat,
als ik 5 schellingen hebbe, ick wederom daer toe kan geraecken, dat
ick gelijcke kans sal hebben, om 3 of 7 schellingen te krijgen, en dat
met rechtmatigh spel: gelijck hier naer sal betoont werden.”



Translation

“I take as the foundation of both [calculating what non-finished haz-
ard games are worth, and calculating winning chances in such games]
that in playing the chance that someone has in some matter, is worth
just as much as the amount that, if he possesses it, will give him the
same chances in a fair game, that is a game where no loss is offered to
anyone. For instance. Suppose someone without my knowing hides
in one hand 3 shillings, and in the other 7 shillings, and he offers me
the choice between the two hands. Then I would say that this offer
is worth the same as having 5 shillings for sure. Because, if I have 5
shillings, I can wager them in such manner that I have equal chances
of getting 3 or 7 shillings, and that in a fair game, as will be explained
hereafter.”



“[. . . ] Indien ick gelijcke kans heb om 3 te hebben of 7, soo is door dit
Voorstel mijn kansse 5 weerdt; ende het is seecker dat ick 5 hebbende
weder tot de selfde kansse kan geraecken. Want speelende om de
selve tegen een ander die daer 5 tegen set, met beding dat de geene
die wint den anderen 3 sal geven; soo is dit rechtmaetig spel, ende
het blijckt dat ick gelijcke kans hebbe om 3 te hebben, te weeten, als
ick verlies, of 7 indien ick win; want alsdan treck ick 10, daer van ick
hem 3 geef.”



“[. . . ] Indien ick gelijcke kans heb om 3 te hebben of 7, soo is door dit
Voorstel mijn kansse 5 weerdt; ende het is seecker dat ick 5 hebbende
weder tot de selfde kansse kan geraecken. Want speelende om de
selve tegen een ander die daer 5 tegen set, met beding dat de geene
die wint den anderen 3 sal geven; soo is dit rechtmaetig spel, ende
het blijckt dat ick gelijcke kans hebbe om 3 te hebben, te weeten, als
ick verlies, of 7 indien ick win; want alsdan treck ick 10, daer van ick
hem 3 geef.”

“[. . . ] If I have equal chances to have 3 or 7, then by my Proposal
this chance is worth 5; and it is sure that if I have 5, I will get to the
same chance. Because putting 5 at stake against someone who stakes
5 against it, with condition that the one who wins will give the other
3, one has a fair game, and it becomes clear that I have equal chance
of getting 3, namely, if I lose, or 7 if I win; because if I win I draw
10, of which I give 3 to him.”



Huygens’ Reconstruction

• Starting point is expectation of single individual in lottery-like
situation.

• Reconstruction uses n-person game, where n is the number of
proposed chances, with equal stakes, and symmetric roles.

• Value of the stakes equals expectation.

• “Equal Chance” is validly defined as free choice for the player in
a symmetric situation. See Freudenthal [Fre80].

• This game foundation of probability predates the Dutch book ar-
gument of Ramsey (1926) [Ram31] by more than two and a half
centuries.
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of action a1, . . . , an. The agent is uncertain about the state of the
world: she considers states s1, . . . , sm possible. There is a table of
consequences c, with c(si, aj) giving the consequences of performing
action aj in state si.
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Decision Making under Uncertainty

An agent faces a choice between a finite number of possible courses
of action a1, . . . , an. The agent is uncertain about the state of the
world: she considers states s1, . . . , sm possible. There is a table of
consequences c, with c(si, aj) giving the consequences of performing
action aj in state si.

Suppose there is a preference ordering R on the consequences, with
cRc′ expressing that either the agent is indifferent between c and c′, or
the agent strictly prefers c to c′. Assume R is transitive and reflexive.
Then define cPc′ as cRc′∧¬c′Rc, so that cPc′ expresses that the agent
strictly prefers c to c′. The relation P is transitive and irreflexive.

A utility function u : C → R represents R if u satisfies u(c) ≥ u(c′)

iff cRc′.

How can the agent pick the best available action?





The Von Neuman and Morgenstern Decision Tool

Von Neumann and Morgenstern [NM44] showed how to turn this into
a tool for decision making if one adds a probability measure P on the
state set. So assume P (si) ≥ 0 and

∑n
i=1 P (si) = 1. Then a utility

function u on the consequences induces a utility function U on the
actions, by means of

U(aj) =

n∑
i=1

P (si)u(si, aj).

A rational agent who disposes of a utility function u representing her
preferences and a probability measure on what she thinks is possible
will perform the action aj that maximizes U(aj) . . .

This is the reason why expositions of probability theory often make
strong claims about the applicability of their subject.



Strong Claims . . .

“Life: Life is uncertain, and probability is the logic of uncertainty.
While it isn’t practical to carry out a formal probability calculation
for every decision made in life, thinking hard about probability can
help us avert some common fallacies, shed light on coincidences, and
make better predictions.” [BH14]



Success Story: The German Tank Problem

Given a list of serial numbers on gearboxes of tanks that were cap-
tured or destroyed, estimate the total number of tanks. Find an esti-
mate of the number of tanks produced each month. The probabilistic
analysis of this turned out to be vastly more reliable than the intelli-
gence estimates.



Success Story: The German Tank Problem

Given a list of serial numbers on gearboxes of tanks that were cap-
tured or destroyed, estimate the total number of tanks. Find an esti-
mate of the number of tanks produced each month. The probabilistic
analysis of this turned out to be vastly more reliable than the intelli-
gence estimates.

Statistical estimate for tanks produced in August 1942: 327. Intelli-
gence estimate: 1550. German records: 342.



Qualitative and Quantitative Beliefs at Odds

You are from a population with a statistical chance of 1 in 100 of
having disease D. The initial screening test for this has a false positive
rate of 0.2 and a false negative rate of 0.1. You tested positive (T).



Should you believe you have disease D?

• You reason: “if I test positive then, given that the test is quite
reliable, the probability that I have D is quite high.”

• So you believe that you have D.

• Now you recall: “True positives dwarfed by false positives”

• You pick up pen and paper and calculate:

P (D|T ) =
P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)

• Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) = 0.99, P (T |¬D) =

0.2 gives P (D|T ) = 1
23.

• You don’t believe you have D but you agree to further testing.



• Richard Jeffrey: Give up qualitative belief. It is misleading.
[Jef04]





Some Varieties of Belief

• Betting belief (or: Bayesian belief) in ϕ: P (ϕ) > P (¬ϕ). Van
Eijck & Renne [ER14].

• Threshold belief in ϕ: P (ϕ) > t, for some specific t with 1
2 ≤

t < 1. Also known as Lockean belief.

• Stable belief in ϕ: For all consistent ψ: P (ϕ|ψ) > P (¬ϕ|ψ)

(Leitgeb [Lei10]).

• Strong belief in ϕ. Defined for plausibility models, e.g., locally
connected well-preorders. An agent strongly believes in ϕ if ϕ is
true in all most plausible accessible worlds. This yields a KD45
notion of belief (reflexive, euclidean, and serial). Baltag & Smets
[BS06, BS08]

• Subjective certainty belief in ϕ: P (ϕ) = 1. Used in epistemic



game theory (Aumann [Aum99]).
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The Lottery Puzzle

If Alice believes of each of the tickets 000001 through 111111 that
they are not winning, then this situation is described by the following
formula:

111111∧
t=000001

Ba¬t.

If her beliefs are closed under conjunction, then this follows:

Ba

111111∧
t=000001

¬t.

But actually, she believes, of course, that one of the tickets is winning:

Ba

111111∨
t=000001

t.

This is a contradiction.



Three Possible Reactions to the Lottery Puzzle

1. Deny that Alice believes that her ticket is not winning.

2. Block the inference from
∧111111
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3. . . . ?? . . . Deny that Alice believes that there is a winning ticket.
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Discussion

• Advantage of (1): no need to sacrifice closure of belief under
conjunction.

• Disadvantage of (1): severe restriction of what counts as belief.

• Advantage of (2): sacrifice closure of belief under conjunction is
maybe not so bad after all. Lots of nice logical properties remain
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• Advantage of (2): no need to artificially restrict what counts as
belief.

• Proponents of (1): many philosophers.



Discussion

• Advantage of (1): no need to sacrifice closure of belief under
conjunction.

• Disadvantage of (1): severe restriction of what counts as belief.

• Advantage of (2): sacrifice closure of belief under conjunction is
maybe not so bad after all. Lots of nice logical properties remain
(see below).

• Advantage of (2): no need to artificially restrict what counts as
belief.

• Proponents of (1): many philosophers.

Easy to recognize: they call the lottery puzzle the lottery paradox.

• Proponents of (2): Subjective Probabilists like Jeffrey [Jef04].
Decision theorists like Kyburg [Kyb61].



How can we drop the closure of belief under conjunction?

We need an operator Bi that does not satisfy (Dist).

Bi(ϕ→ ψ)→ Biϕ→ Biψ (Dist-B)

This means: Bi is not a normal modal operator.

See also [Zve10].



Epistemic Neighbourhood Models

An Epistemic Neighbourhood ModelM is a tuple

(W,R, V,N)

where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W . We use [w]i for the ∼i class of w, i.e., for the
set {v ∈ W | w ∼i v}.

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.

• N is a function that assigns to every agent i ∈ Ag and world
w ∈ W a collectionNi(w) of sets of worlds—each such set called
a neighbourhood of w—subject to a set of conditions.



Conditions

(c) ∀X ∈ Ni(w) : X ⊆ [w]i. This ensures that agent i does not
believe any propositions X ⊆ W that she knows to be false.

(f) ∅ /∈ Ni(w). This ensures that no logical falsehood is believed.

(n) [w]i ∈ Ni(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]i : Ni(v) = Ni(w). This ensures that if X is believed,
then it is known that X is believed.

(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w). This says
that belief is monotonic: if an agent believesX , then she believes
all propositions Y ⊇ X that follow from X .



Extra conditions

(d) If X ∈ Ni(w) then [w]i − X /∈ Ni(w). This says that if i be-
lieves a proposition X then i does not believe the negation of that
proposition.

(sc) ∀X, Y ⊆ [w]a: if [w]a − X /∈ Na(w) and X ( Y , then Y ∈
Na(w). If the agent does not believe the complement [w]a − X ,
then she must believe any strictly weaker Y implied by X .



Language

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Biϕ.

Semantics:

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff for some X ∈ Ni(w), for all v ∈ X :M, v |= ϕ.
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Example

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

In all worlds, K(p ∨ q ∨ r) is true.

In all worlds B¬p, B¬q, B¬r are true.

In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.

The lottery puzzle is solved in neighbourhood models for belief by
non-closure of belief under conjunction.



(Taut) All instances of propositional tautologies
(Dist-K) Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

(T) Kiϕ→ ϕ

(PI-K) Kiϕ→ KiKiϕ

(NI-K) ¬Kiϕ→ Ki¬Kiϕ

(F) ¬Bi⊥.
(PI-KB) Biϕ→ KiBiϕ

(NI-KB) ¬Biϕ→ Ki¬Biϕ

(KB) Kiϕ→ Biϕ

(M) Ki(ϕ→ ψ)→ Biϕ→ Biψ

(D) Biϕ→ ¬Bi¬ϕ.
(SC) B̌aϕ ∧ Ǩa(¬ϕ ∧ ψ)→ Ba(ϕ ∨ ψ)

RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ

Kiϕ
(Nec-K)



Completeness for Epistemic Neighbourhood Models

See [ER14] and [BvBvES14].



Completeness for Epistemic Neighbourhood Models

See [ER14] and [BvBvES14].

Epistemic Probability Models

Epistemic probability models are the result of replacing the neigh-
bourhood function of an epistemic neighbourhood model by a weight
function L.

A weight function L assigns to every agent i a function Li : W → Q+

(the positive rationals), subject to the constraint that the sum of the Li
values over each epistemic partition cell of i is bounded.

If X ⊆ W then let Li(X) be shorthand for
∑

x∈X Li(x).

Boundedness: for each i and w: Li([w]i) <∞.



Example: Horse Racing

Two agents i, j consider betting on a horse race. Three horses a, b, c
take part in the race, and there are three possible outcomes: a for “a
wins”, b for “ b wins”, and c for “c wins.” i takes the winning chances
to be 3 : 2 : 1, j takes them to be 1 : 2 : 1.

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

In all worlds, i assigns probability 1
2 to a, 1

3 to b and 1
6 to c, while j

assigns probability 1
4 to a and to c, and probability 1

2 to b.



Agent j has learnt something

Agent j (dashed lines) now considers c impossible.
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Agent j has learnt something

Agent j (dashed lines) now considers c impossible.

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

The probabilities assigned by i remain as before.

The probabilities assigned by j have changed, as follows. In worlds
a and b, j assigns probability 1

3 to a and 2
3 to b. In world c, j is sure of

c.



Fair or Biased?

Two agents i (solid lines) and j (dashed lines) are uncertain about the
toss of a coin. i holds it for possible that the coin is fair f and that it
is biased f , with a bias 2

3 for heads h. j can distinguish f from f . The
two agents share the same weight (so this is a single weight model),
and the weight values are indicated as numbers in the picture.

hf 2 hf 3

hf 2 hf 1



Fair or Biased?

Two agents i (solid lines) and j (dashed lines) are uncertain about the
toss of a coin. i holds it for possible that the coin is fair f and that it
is biased f , with a bias 2

3 for heads h. j can distinguish f from f . The
two agents share the same weight (so this is a single weight model),
and the weight values are indicated as numbers in the picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8 to h and probability 1

2 to f , and j
assigns probability 1

2 to h and probability 1 to f .



Normalized Version

Give each agent its own weight, and normalize the weight functions
using the epistemic accessibilities.

hf
i : 1

4, j : 1
2

hf
i : 1

4, j : 1
2

hf
i : 3

8, j : 3
4

hf
i : 1

8, j : 1
4



Interpretation of KB language in Epistemic Probability Models

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff∑
{Li(v) | v ∈ [w]i,M, v |= ϕ} >

∑
{Li(v) | v ∈ [w]i,M, v |= ¬ϕ}.



Interpretation of KB language in Epistemic Probability Models

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff∑
{Li(v) | v ∈ [w]i,M, v |= ϕ} >

∑
{Li(v) | v ∈ [w]i,M, v |= ¬ϕ}.

Agreement

Let M = (W,R, V,N) be a neighbourhood model and let L be a
weigth function for M. Then L agrees with M if it holds for all
agents i and all w ∈ W that

X ∈ Ni(w) iff Li(X) > Li([w]i −X).



Incompleteness of KB Calculus for Probability Models

There exists an epistemic neighbourhood modelM that has no agree-
ing weight function.

Adaptation of example 2 from [WF79, pp. 344-345]

Let Prop := {a, b, c, d, e, f, g}. Assume a single agent 0. Define:

X := {efg, abg, adf, bde, ace, cdg, bcf}.

X ′ := {abcd, cdef, bceg, acfg, bdfg, abef, adeg}.
Notation: xyz for {x, y, z}.

Y := {Y | ∃X ∈ X : X ≤ Y ≤ W}.

Let M := (W,R, V,N) be defined by W := Prop, R0 = W ×W ,
V (w) = {w}, and for all w ∈ W , N0(w) = Y .

Check that X ′ ∩ Y = ∅. SoM is a neighbourhood model.



Toward a contradiction, suppose there exists a weight function L that
agrees withM.
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L0(X) =
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3 · L0({p}).
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Toward a contradiction, suppose there exists a weight function L that
agrees withM.

Since each letter p ∈ W occurs in exactly three of the seven members
of X , we have: ∑

X∈X

L0(X) =
∑
p∈W

3 · L0({p}).

Since each letter p ∈ W occurs in exactly four of the seven members
of X ′, we have: ∑

X∈X ′
L0(X) =

∑
p∈W

4 · L0({p}).

On the other hand, from the fact that L0(X) > Lo(W − X) for all
members X of X we get:∑

X∈X

L0(X) >
∑
X∈X

L0(W −X) =
∑
X∈X ′

L0(X).

Contradiction. So no such L0 exists.



Strengthening the Axiom System

Scott Axioms, intuitively:

If agent a knows the number of true ϕi is less than or equal to the
number of true ψi, agent a believes ϕ1, and the remaining ϕi are each
consistent with her beliefs, then agent a believes one of the ψi.



Strengthening the Axiom System

Scott Axioms, intuitively:

If agent a knows the number of true ϕi is less than or equal to the
number of true ψi, agent a believes ϕ1, and the remaining ϕi are each
consistent with her beliefs, then agent a believes one of the ψi.

It turns out this is expressible in the KB language.

Segerberg notation [Seg71]:

(ϕ1, . . . , ϕmIaψ1, . . . , ψm)

abbreviates a KB formula expressing that agent a knows that the num-
ber of true ϕi’s is less than or equal to the number of true ψi’s.

Put another way, (ϕiIaψi)mi=1 is true if and only if every one of a’s
epistemically accessible worlds satisfies at least as many ψi as ϕi.



Scott Axioms

(Scott) [(ϕiIaψi)mi=1 ∧Baϕ1 ∧
∧m
i=2 B̌aϕi]→

∨m
i=1Baψi



Scott Axioms

(Scott) [(ϕiIaψi)mi=1 ∧Baϕ1 ∧
∧m
i=2 B̌aϕi]→

∨m
i=1Baψi

Fact 1 Adding the Scott axioms to the KB calculus yields a system
that is sound and complete for epistemic probability models [ER14].



Epistemic Probability Language

Let i range over Ag, p over Prop, and q over Q. Then the language of
epistemic probability logic is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ti ≥ 0 | ti = 0

ti ::= q | q · Piϕ | ti + ti where all indices i are the same.



Truth for Epistemic Probability Logic
LetM = (W,R, V, L) be an epistemic weight model and let w ∈ W .

M, w |= > always
M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2

M, w |= ti ≥ 0 iff [[ti]]
M
w ≥ 0

M, w |= ti = 0 iff [[ti]]
M
w = 0.

[[q]]Mw := q

[[q · Piϕ]]Mw := q × PMi,w(ϕ)

[[ti + t′i]]
M
w := [[ti]]

M
w + [[t′i]]

M
w

PMi,w(ϕ) =
Li({u ∈ [w]i | M, u |= ϕ})

Li([w]i)
.



Fact 2 A sound and complete calculus for the language of epistemic
probability logic, interpreted in epistemic probability models, is given
in [ES14]. See also [FH94] and [Koo03].



From Epistemic Probability Models to Epistemic Neighbourhood
Models

IfM = (W,R, V, L) is an epistemic weight model, thenM• is the tu-
ple (W,R, V,N) given by replacing the weight function by a function
N , where N is defined as follows, for i ∈ Ag, w ∈ W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.

Fact 3 For any epistemic weight model M it holds that M• is a
neighbourhood model.



Translating Knowledge and Belief

If ϕ is a KB formula, then ϕ• is the formula of the language of epis-
temic probability logic given by the following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)
• = ϕ•1 ∧ ϕ•2

(Kiϕ)• = Pi(ϕ
•) = 1

(Biϕ)• = Pi(ϕ
•) > Pi(¬ϕ•).



Translating Knowledge and Belief

If ϕ is a KB formula, then ϕ• is the formula of the language of epis-
temic probability logic given by the following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)
• = ϕ•1 ∧ ϕ•2

(Kiϕ)• = Pi(ϕ
•) = 1

(Biϕ)• = Pi(ϕ
•) > Pi(¬ϕ•).

Theorem 4 For all KB formulas ϕ, for all epistemic probability mod-
elsM, for all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.



Theorem 5 Let ` denote derivability in the neighbourhood calculus
for KB. Let `′ denote derivability in the calculus of EPL. Then ` ϕ
implies `′ ϕ•.



Conclusions and Connections

• Representation of probabibility information by means of weight
functions was designed with implementation of model checking
in mind. Just extend epistemic model checkers for S5 logics with
a weight table for each agent.

• Implementations of model checkers for these logics can be found
in [Eij13] and in [San14] . . .

• The implementations can deal with Monty Hall style puzzles, urn
puzzles, Bayesian updating by drawing from urns or tossing (pos-
sibly biased) coins, and ‘paradoxes’ such as the puzzle of the
three prisoners.

• Efficiency was not a goal, but these implementation can be made
very efficient with a little effort.



How to Move on From Here

• Further analysis of the connection between neighbourhood logics
and probabilistic logics [ER14]. This is also connected to work
of Wes Holliday and Thomas Icard [HI13]. Are there applica-
tions where neighbourhoods without agreeing weight functions
are natural? Is there a natural interpretation for the incomplete-
ness example for {a, b, c, d, e, f, g}?

• Combine EPL with network information for the agents, where
the network is given by a relation, and where links starting from
an agent can be added (“start following”) and deleted (“stop fol-
lowing, unfollow”). Interpret announcements as group messages
to all followers. See [RT11] and current work by Jerry Seligman
and Thomas Agotnes. But: this can all be done with epistemic
PDL with a binary follow relation F added.



• Add bias variables X for the representation of unknown biases.
Collaboration in progress with Joshua Sack.

• Work with the epistemic PDL version of the probabilistic logic,
as an extension of LCC from [BvEK06]. This gives us common
knowledge, and a nice axiomatisation by means of epistemic pro-
gram transformation [Ach14].

• Achieve better efficiency, by using methods proposed by Kaile
Su.

• Towards analysis of real-life protocols. Compare the use of epis-
temic model checking by Malvin Gattinger [Gat13, Gat14b, Gat14a].



• Consider weak weight models, where the weight functions assign
pairs of values (x, y), with x giving the lower probability L and
x + y the upper probability U . Belief of i in ϕ is now modelled
as Li(ϕ) > Hi(¬ϕ). This connects up to weak Bayesianism and
imprecise probability theory [Wal91].

• Consolidate what we know about the topic in a state-of-the-art
textbook [BvBvES14].



Aside: The Puzzle of the Three Prisoners

Alice, Bob and Carol are in prison. It is known that two of them will
be shot, the other freed. The warden knows what is going to happen,
so Alice asks him to reveal the name of one other than herself who
will be shot, explaining to him that since there must be at least one,
this will not reveal any new information. The warden agrees and says
that Bob will be shot. Alice is cheered up a little by this, for she
concludes that her chance of surviving has now improved from 1

3 to 1
2.

Is this correct? How does this agree with the intuition that the warden
has not revealed new information?

Many sources, e.g. [Jef04].
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