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Abstract

The talk will present epistemic probability models with probabilistic updates, and will dis-
cuss an implementation that allows model checking the results of updates in a multi-agent set-
ting. I will do my best to connect this to the themes of the workshop.



Belief and Probability

In the perspective of epistemic logic, our body of knowledge consists
of true facts that we are certain about. But in the practice of everyday
life and in the pursuit of science such absolute certainty is very rare.
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Belief and Probability

In the perspective of epistemic logic, our body of knowledge consists
of true facts that we are certain about. But in the practice of everyday
life and in the pursuit of science such absolute certainty is very rare.

• Can I safely cross this road?

• Should I bring my umbrella?

• Can I trust this bank?

• Is it safe to order from this cheap website?

• Can I trust this estimate of the mass of the planet Saturn?1

1Pierre Simon Laplace made a famous calculation of this, including an estimate for the uncertainty, using the astro-
nomical data that were available to him in the early Nineteenth Century.



The Lottery Puzzle

If Alice believes of each of the tickets 000001 through 111111 that
they are not winning, then this situation is described by the following
formula:

111111∧
t=000001

Ba¬t.

If her beliefs are closed under conjunction, then this follows:

Ba

111111∧
t=000001

¬t.

But actually, she believes, of course, that one of the tickets is winning:

Ba

111111∨
t=000001

t.



This is a contradiction. The difficulty arises if we assume belief is
closed under conjunction.

So it seems we need an operator Bi that does not satisfy (Dist).

Bi(ϕ→ ψ)→ Biϕ→ Biψ (Dist-B)

This means: Bi is not a normal modal operator.



Epistemic Neighbourhood Models

An Epistemic Neighbourhood ModelM is a tuple

(W,R,N, V )

where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W . We use [w]i for the ∼i class of w, i.e., for the
set {v ∈ W | w ∼i v}.

• N is a function that assigns to every agent i ∈ Ag and world
w ∈ W a collectionNi(w) of sets of worlds—each such set called
a neighbourhood of w—subject to a set of conditions.

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.



Conditions

(c) ∀X ∈ Ni(w) : X ⊆ [w]i. This ensures that agent i does not
believe any propositions X ⊆ W that she knows to be false. If
X contains a world in w′ ∈ W − [w]i that the agent knows is not
possible with respect to the actual world w, then she knows that
X cannot be the case and hence she does not believe X .

(f) ∅ /∈ Ni(w). This ensures that no logical falsehood is believed.

(n) [w]i ∈ Ni(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]i : Ni(v) = Ni(w). This ensures that if X is believed,
then it is known that X is believed.

(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w). This says
that belief is monotonic: if an agent believesX , then she believes
all propositions Y ⊇ X that follow from X .



(d) If X ∈ Ni(w) then [w]i − X /∈ Ni(w). This says that if i be-
lieves a proposition X then i does not believe the negation of that
proposition.



Language

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Biϕ.

Semantics:

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff for some X ∈ Ni(w), for all v ∈ X :M, v |= ϕ.
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w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}
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Example

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

In all worlds, K(p ∨ q ∨ r) is true.

In all worlds B¬p, B¬q, B¬r are true.

In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



AXIOMS

(Taut) All instances of propositional tautologies

(Dist-K) Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

(T) Kiϕ→ ϕ

(PI-K) Kiϕ→ KiKiϕ

(NI-K) ¬Kiϕ→ Ki¬Kiϕ

(F) ¬Bi⊥.

(PI-KB) Biϕ→ KiBiϕ

(NI-KB) ¬Biϕ→ Ki¬Biϕ

(KB) Kiϕ→ Biϕ

(M) Ki(ϕ→ ψ)→ Biϕ→ Biψ

(D) Biϕ→ ¬Bi¬ϕ.



RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ

Kiϕ
(Nec-K)

Further details: see [ER14] and [BvBvES14].



Bisimulation for epistemic-doxastic neighbourhood models

Let M = (WN , RM, VM, NM) and N = (WN , RN , V N , NN ) be
two epistemic-doxastic neighbourhood models, and letC be a relation
on WM × WN . Then C is a bisimulation if wCv implies that the
following hold:

Invariance VM(w) = V N (v), i.e., the two worlds have the same
valuation.

Zig

1. If w′ ∈ RM(w) then there is a v′ ∈ RN (v) with w′Cv′,

2. for all subsets E ⊆ RMi (w) there exists a subset E ′ ⊆ RNi (v)

such that for all u′ ∈ E ′ there exists u ∈ E with uCu′.

Zag 1. and 2. vice versa.



M, w ↔ N , v.

Zig w v

E E ′C[E ′]



Knowledge, Certainty, Belief

One way to make the connection between epistemic logic and proba-
bility theory is by interpreting Kiϕ as “agent i assigns ϕ probability
1”, or, “agent i is certain that ϕ is true.”

Interpret Biϕ as “agent i assigns ϕ higher probability than ¬ϕ”, or,
“agent i assigns ϕ probability greater than 1

2.”

As it turns out, the only thing we have to do is remove the neighbour-
hood function and add a lottery function to an epistemic model.

If W is the set of worlds of an epistemic model, a lottery function
L assigns to every agent i a function Li : W → Q+, subject to the
constraint that the sum of the Li values over each epistemic partition
cell of i is bounded.
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One way to make the connection between epistemic logic and proba-
bility theory is by interpreting Kiϕ as “agent i assigns ϕ probability
1”, or, “agent i is certain that ϕ is true.”

Interpret Biϕ as “agent i assigns ϕ higher probability than ¬ϕ”, or,
“agent i assigns ϕ probability greater than 1

2.”

As it turns out, the only thing we have to do is remove the neighbour-
hood function and add a lottery function to an epistemic model.

If W is the set of worlds of an epistemic model, a lottery function
L assigns to every agent i a function Li : W → Q+, subject to the
constraint that the sum of the Li values over each epistemic partition
cell of i is bounded.

If X ⊆ W then Li(X) is shorthand for
∑

x∈X Li(x).



Boundedness

The boundedness condition excludes cases where [w]i is infinite and
each v in [w]i gets the same positive value c. It does not exclude
infinite epistemic partition cells, however.

Example 1 Let [w]i = N, and let Li(n) = 1
2n . Then:

Li([w]i) =
∑
n∈N

1

2n
= 2 <∞.



Epistemic Lottery Models

An Epistemic Lottery ModelM is a tuple (W,R, V, L), where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W .

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.

• L is a function that assigns to every agent i ∈ Ag a lottery Li,
where Li is a function fromW to Q+, the set of positive rationals,
with the constraint that for each w ∈ W ,

Li([w]i) <∞.



Single Lottery Models

An epistemic lottery modelM = (W,R, V, L) is single (or: a single
lottery model) if for all i, j ∈ Ag it holds that Li = Lj.

Example 2 Take any epistemic modelM = (W,R, V ) with W finite.
Let L be the function that maps i to the lottery Li = λw.1. Then
(W,R, V, L) is an epistemic single lottery model.



Example 3 Two agents i, j consider betting on a horse race. Three
horses take part in the race, and there are three possible outcomes: a
for “a wins the race”, b for “ b wins the race”, and c for “c wins the
race.” Neither agent knows which horse will win; i takes the winning
chances to be 3 : 2 : 1, j takes them to be 1 : 2 : 1. In a picture:

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

In all worlds, i assigns probability 1
2 to a, 1

3 to b and 1
6 to c, while j

assigns probability 1
4 to a and to c, and probability 1

2 to b.



Example 4 Same situation as in example 3, but now agent j (dashed
lines) considers c impossible.

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

The probabilities assigned by i remain as before. The probabilities
assigned by j have changed, as follows. In worlds a and b, j assigns
probability 1

3 to a and 2
3 to b. In world c, j is sure of c.



Example 5 Two agents i (solid lines) and j (dashed lines) are uncer-
tain about the toss of a coin. i holds it for possible that the coin is fair
f and that it is biased f , with a bias 2

3 for heads h. j can distinguish
f from f . The two agents share the same lottery (so this is a single
lottery model), and the lottery values are indicated as numbers in the
picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8 to h and probability 1

2 to f . In
world hf , j assigns probability 1

2 to h and probability 1 to f . In other
words, j is certain that the coin is fair.



Epistemic Probability Language

Let i range over Ag, p over Prop, and q over Q. Then the language of
epistemic probability logic is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ti ≥ 0 | ti = 0

ti ::= q | q · Piϕ | ti + ti where all indices i are the same.



Truth for Epistemic Probability Logic
LetM = (W,V,R, L) be an epistemic lottery model and let w ∈ W .

M, w |= > always
M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2

M, w |= ti ≥ 0 iff [[ti]]
M
w ≥ 0

M, w |= ti = 0 iff [[ti]]
M
w = 0.

[[q]]Mw := q

[[q · Piϕ]]Mw := q × PMi,w(ϕ)
[[ti + t′i]]

M
w := [[ti]]

M
w + [[t′i]]

M
w

PMi,w(ϕ) =
Li({u ∈ [w]i | M, u |= ϕ})

Li([w]i)
.



Example 6 A normalized model for the horse racing situation from
Example 3 is given in the picture:

a
i : 1

2, j :
1
4

b
i : 1

3, j :
1
2

c
i : 1

6, j :
1
4



Example 7 [Continued from Example 5] The model from Example 5
is an epistemic lottery model where the two agents share the same
lottery. It is also possible to give each agent its own lottery, and to
normalize the lotteries using the epistemic accessibilities.

hf
i : 1

4, j :
1
2

hf
i : 1

4, j :
1
2

hf
i : 3

8, j :
3
4

hf
i : 1

8, j :
1
4



Bisimulation for Epistemic Lottery Models

Let M = (WN , RM, VM, LM) and N = (WN , RN , V N , LN ) be
two epistemic lottery models, and let C be a relation on WM ×WN .
Then C is a bisimulation if wCv implies that the following hold:

Invariance VM(w) = V N (v), i.e., the two worlds have the same
valuation.

Zig For all subsets E ⊆ RMi (w) there exists a subset E ′ ⊆ RNi (v)

such that:

1. for all u′ ∈ E ′ there exists u ∈ E with uCu′;

2. LMi,w(E) ≤ LNi,v(E
′).

Zag Same conditions vice versa.



Zig w v

E E ′C[E ′]

L(E) ≤ L(E ′)

See [ES14]. This is a variation on (and simplification of) the bisimu-
lation notion in [Koo03].



Fact 1 Formulas of epistemic probability logic are invariant for bisim-
ulation [ES14].

Fact 2 On epistemic lottery models with finite epistemic partition cells
for every agent, invariance for formulas of epistemic probability logic
implies bisimilarity [ES14].

Fact 3 A sound and complete for the language of epistemic proba-
bility logic, interpreted in epistemic probability models, is given in
[ES14].



AXIOMS

(Taut) All instances of propositional tautologies

(Linear) All instances of valid formulas about linear inequalities

(ProbNonNeg) Piϕ ≥ 0

(ProbTrue) Pi> = 1

(ProbAdd) Pi(ϕ1 ∧ ϕ2) + Pi(ϕ1 ∧ ¬ϕ2) = Piϕ1

(ProbProbGeq) ti ≥ 0→ Pi(ti ≥ 0) = 1

(ProbProbEq) ti = 0→ Pi(ti = 0) = 1

(ProbT) Piϕ = 1→ ϕ

RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ1 ↔ ϕ2

Piϕ1 = Piϕ2
(ProbRule)



From Lottery Models to Neighbourhood Models

IfM = (W,R, V, L) is an epistemic lottery model, thenM• is the tu-
ple (W,R, V,N) given by replacing the lottery function by a function
N , where N is defined as follows, for i ∈ Ag, w ∈ W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.

Fact 4 For any epistemic lottery model M it holds that M• is a
neighbourhood model.

Fact 5 The calculus of epistemic-doxastic neighbourhood logic is sound
for interpretation in epistemic probability models. Probabilistic be-
liefs are neighbourhoods.



Translating Knowledge and Belief

If ϕ is a formula of the language of epistemic/doxastic logic, then ϕ•

is the formula of the language of epistemic probability logic given by
the following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)
• = ϕ•1 ∧ ϕ•2

(Kiϕ)
• = Pi(ϕ

•) = 1

(Biϕ)
• = Pi(ϕ

•) > Pi(¬ϕ•).

Theorem 6 For all formulas of epistemic/doxastic logic ϕ, for all
epistemic lottery modelsM, for all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.



Theorem 7 Let ` denote derivability in the calculus of EDNL. Let `′
denote derivability in the calculus of EPL. Then ` ϕ implies `′ ϕ•.



Implementation

Building epistemic models from partitions . . .

type Erel a = [[a]]

data Agent = Ag Int deriving (Eq,Ord)

a,b,c,d,e :: Agent
a = Ag 0; b = Ag 1; c = Ag 2; d = Ag 3; e = Ag 4

data Prp = P Int | Q Int | R Int | S Int
deriving (Eq,Ord)



Epistemic models

data EpistM state = Mo
[state]
[Agent]
[(state,[Prp])]
[(Agent,Erel state)]
[state] deriving (Eq,Show)



example1 :: EpistM Int
example1 = Mo
[0..3]
[a,b,c]
[]
[(a,[[0],[1],[2],[3]]),
(b,[[0],[1],[2],[3]]),(c,[[0..3]])]

[1]



Epistemic Formulas

data Frm a = Tp
| Info a
| Prp Prp
| N (Frm a)
| C [Frm a]
| D [Frm a]
| Kn Agent (Frm a)
deriving (Eq,Ord,Show)

Truth Definition

. . .



isTrueAt :: Ord state =>
EpistM state -> state -> Frm state -> Bool

isTrueAt m w Tp = True
isTrueAt m w (Info x) = w == x
isTrueAt

m@(Mo worlds agents val acc points) w (Prp p) =
let props = apply val w
in elem p props

isTrueAt m w (N f) = not (isTrueAt m w f)
isTrueAt m w (C fs) = and (map (isTrueAt m w) fs)
isTrueAt m w (D fs) = or (map (isTrueAt m w) fs)
isTrueAt
m@(Mo worlds agents val acc points) w (Kn ag f) =
let

r = rel ag m
b = bl r w

in
and (map (flip (isTrueAt m) f) b)



Public Announcement

upd_pa :: Ord state =>
EpistM state -> Frm state -> EpistM state

upd_pa m@(Mo states agents val rels actual) f =
(Mo sts’ agents val’ rels’ actual’) where

sts’ = [ s | s <- states, isTrueAt m s f ]
val’ = [ (s, ps) | (s,ps) <- val,

s ‘elem‘ sts’]
rels’ = [(ag,restrict sts’ r) |

(ag,r) <- rels ]
actual’= [ s | s <- actual, s ‘elem‘ sts’ ]

upds_pa :: Ord state =>
EpistM state -> [Frm state] -> EpistM state

upds_pa = foldl upd_pa



Example: Sum and Product (Hans Freudenthal)

A says to S and P: I have chosen two integers x, y such that 1 < x < y

and x + y ≤ 100. In a moment, I will inform S only of s = x + y,
and P only of p = xy. These announcements remain private. You are
required to determine the pair (x, y). He acts as said. The following
conversation now takes place:

1. P says: “I do not know the pair.”

2. S says: “I knew you didn’t.”

3. P says: “I now know it.”

4. S says: “I now also know it.”

Determine the pair (x, y).



A model checking solution with DEMO [vE05, vE07] (based on a
DEMO program written by Ji Ruan) was presented in [DRV05]. An
optimized version of that solution is in [vE13].

The list of candidate pairs:

pairs :: [(Int,Int)]
pairs = [ (x,y) | x <- [2..100], y <- [2..100],

x < y, x+y <= 100 ]

The solution:
solution = upds_pa msnp

[k_a_statement_1e,statement_2e,statement_3e]

This is checked in a matter of seconds:

*DEMO_S5> solution
Mo [(4,13)] [a,b] [(a,[[(4,13)]]),(b,[[(4,13)]])]

[(4,13)]



Extending This With Lotteries

• Representation of probabibility information by means of lotteries
was designed with implementation of model checking in mind.

• Just extend the epistemic models with a lottery table for each
agent.

• Implementations of model checkers for these logics can be found
in [Eij13] and in [San14] . . .

• The implementations can deal with Monty Hall style puzzles, urn
puzzles, Bayesian updating by drawing from urns or tossing (pos-
sibly biased) coins, and ‘paradoxes’ such as the puzzle of the
three prisoners (below).

• Efficiency was not a goal, but these implementation can be made
very efficient with a little effort.



Aside: The Puzzle of the Three Prisoners

Alice, Bob and Carol are in prison. It is known that two of them will
be shot, the other freed. The warden knows what is going to happen,
so Alice asks him to reveal the name of one other than herself who
will be shot, explaining to him that since there must be at least one,
this will not reveal any new information. The warden agrees and says
that Bob will be shot. Alice is cheered up a little by this, for she
concludes that her chance of surviving has now improved from 1

3 to 1
2.

Is this correct? How does this agree with the intuition that the warden
has not revealed new information?

Many sources, e.g. [Jef04].



How to Move on From Here

• Towards the goal of the workshop: combine EPL with network
information for the agents, where the network is given by a rela-
tion, and where links starting from an agent can be added (“start
following”) and deleted (“stop following, unfollow”). Interpret
announcements as group messages to all followers. See [RT11]
and current work by Jerry Seligman and Thomas Agotnes. But:
this can all be done with epistemic PDL with a binary follow re-
lation F added.

• Further analysis of the connection between neighbourhood logics
and probabilistic logics [ER14]. This is also connected to work
of Wes Holliday and Thomas Icard.

• Add bias variables X for the representation of unknown biases.
Compare Joshua Sack’s talk.



• Work with the epistemic PDL version of the probabilistic logic,
as an extension of LCC from [BvEK06]. This gives us common
knowledge, and a nice axiomatisation by means of epistemic pro-
gram transformation [Ach14].

• Achieve better efficiency, by teaming up with Kaile Su (next
talk).

• Towards analysis of real-life protocols. Compare the use of epis-
temic model checking by Malvin Gattinger [Gat13, Gat14b, Gat14a].

• Consider weak lottery models, where the lotteries assign pairs of
values (x, y), with x giving the lower probability L and x + y

the upper probability U . Belief of i in ϕ is now modelled as
Li(ϕ) > Hi(¬ϕ). This connects up to weak Bayesianism and
imprecise probability theory [Wal91].

• Consolidate what we know about the topic in a state-of-the-art



textbook [BvBvES14].
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