
From Number Guessing Games

to
Security Protocol Analysis

and
Back

Jan van Eijck
CWI & ILLC, Amsterdam

R60 Jubilee Event, Tilburg, December 16, 2013

Abstract

The talk will explain what goes on in number guessing games, and present a new formal rep-
resentation (in terms of Kripke semantics) of information update in such games. This can be
used in real life settings: one application is the analysis of cryptographic security protocols. I
will look at a protocol for secret key distribution over an insecure network, and show how this is
analysed with Kripke semantics. Finally, I address the question whether there are lessons to be
learned for natural language analysis.

Language and Communication

No essential difference between formal and natural languages for com-
munication.

What does it mean to know a proposition?

How to Model Ignorance?

w : H w′ : T

Probability, Betting, Ignorance

Probability, Betting, Ignorance

Christiaan Huygens, 1629–1695

Van
Rekeningh

in
Spelen van Geluck

1660
[Huy60]

Huygens on the Foundations of Probability

“Ick neeme tot beyder fondament, dat in het speelen de kansse, die
yemant ergens toe heeft, even soo veel weerdt is als het geen, het
welck hebbende hy weder tot deselfde kansse kan geraecken met
rechtmatigh spel, dat is, daer in niemandt verlies geboden werdt. By
exempel. So yemandt sonder mijn weeten in d’eene handt 3 schellin-
gen verbergt, en in d’ander 7 schellingen, ende my te kiesen geeft
welck van beyde ick begeere te hebben, ick segge dit my even soo
veel weerdt te zijn, als of ick 5 schellingen seecker hadde. Om dat,
als ik 5 schellingen hebbe, ick wederom daer toe kan geraecken, dat
ick gelijcke kans sal hebben, om 3 of 7 schellingen te krijgen, en dat
met rechtmatigh spel: gelijck hier naer sal betoont werden.”

Translation

“I take as the foundation of both [calculating what non-finished haz-
ard games are worth, and calculating winning chances in such games]
that in playing the chance that someone has in some matter, is worth
just as much as the amount that, if he possesses it, will give him the
same chances in a fair game, that is a game where no loss is offered to
anyone. For instance. Suppose someone without my knowing hides
in one hand 3 shillings, and in the other 7 shillings, and he offers me
the choice between the two hands. Then I would say that this offer
is worth the same as having 5 shillings for sure. Because, if I have 5
shillings, I can wager them in such manner that I have equal chances
of getting 3 or 7 shillings, and that in a fair game, as will be explained
hereafter.”

Huygens’ First Proposition

“Als ick gelijcke kans hebbe om a of b te hebben, dit is my so veel
weerdt als (a + b)/2”

“If I have equal chances of getting a and b, then to me this is worth
(a + b)/2.”

Next, Huygens gives an explanation in terms of a game, and uses this
explanation to prove the proposition.

Explanation and Proof in Terms of a Game

“Want (a+b)/2 hebbende, soo kan ick dat tegen een ander waegen die
mede (a+b)/2 sal insetten, ende bedingen dat die het spel wint, den
anderen sal a geven. Waer door ick gelijcke kans sal bekomen om a
te hebben, te weeten, als ick verlies, of b als ick win; want alsdan soo
treck ick a+b dat in-geset is, ende geef hem daer van a.”

Tr:

“For having (a+b)/2, I can wager that against someone else who also
stakes (a + b)/2, with the stipulation that the one who wins the game
will give the other a. This will give me equal chance of getting a,
namely if I lose, or b if I win; because in that case I get the stake of
a + b, and from this I give him a.”

Example in Numbers

“[. . .] In getaelen. Indien ick gelijcke kans heb om 3 te hebben of 7,
soo is door dit Voorstel mijn kansse 5 weerdt; ende het is seecker dat
ick 5 hebbende weder tot de selfde kansse kan geraecken. Want spee-
lende om de selve tegen een ander die daer 5 tegen set, met beding
dat de geene die wint den anderen 3 sal geven; soo is dit rechtmaetig
spel, ende het blijckt dat ick gelijcke kans hebbe om 3 te hebben, te
weeten, als ick verlies, of 7 indien ick win; want alsdan treck ick 10,
daer van ick hem 3 geef.”

Example in Numbers: Translation

“[. . .] In numbers. If I have equal chances to have 3 or 7, then by my
Proposal this chance is worth 5; and it is sure that if I have 5, I will get
to the same chance. Because putting 5 at stake against someone who
stakes 5 against it, with condition that the one who wins will give the
other 3, one has a fair game, and it becomes clear that I have equal
chance of getting 3, namely, if I lose, or 7 if I win; because if I win I
draw 10, of which I give 3 to him.”

Hans Freudenthal, 1905–1990

Comment of Hans Freudenthal

“This is not a trivial transformation. The original situation for which
the expectation has to be calculated is that of an individual in a game-
like situation, yet with no adversary identified (say a lottery). It is
reconstructed as an n persons’ game (if n is the number of chances
proposed) with equal stakes and the appropriate stipulations, which
by virtue of their mutuality are fair. The value of the stakes under
consideration is just the expectation.

“Equal chance,” as used by Huygens, does not beg the question either.
In Huygens’ model, where the player is given the free choice to take
one hand or the other, or, more generally, to decide himself which
one of a number of possibilities he chooses, equal chance is validly
defined by the complete ignorance and the free will of the player.”

[Fre80]

What does it mean to know a number?

Jan, Gaia and Rosa Play the Number Guessing Game

Number Guessing Game, Naive Version

• Jan says: “I have a number in mind, in the range from one to ten.
You may take turns guessing. Whoever guesses the number first
gets the toy. It is Gaia’s turn to start, for last time we played this
game Rosa started the guessing.”

• Gaia and Rosa agree . . .

• After a number of rounds, Jan announces: “Rosa, you have won.”

Number Guessing: Naive Representation

1 2 3 4 5

6 7 8 9 10

Number Guessing: Naive Representation

1 2 3 4 5

6 7 8 9 10

“eight” . . . “no”

Number Guessing: Naive Representation

1 2 3 4 5

6 7 8 9 10

“eight” . . . “no”

1 2 3 4 5

6 7 9 10

1 2 3 4 5

6 7 9 10

1 2 3 4 5

6 7 9 10

“five” . . . “no”

1 2 3 4 5

6 7 9 10

“five” . . . “no”

1 2 3 4

6 7 9 10

Number Guessing Game, More Sophisticated Version

• Jan says: “I have a number in mind, in the range from one to ten.
You may take turns guessing. Whoever guesses the number first
gets the toy. It is Gaia’s turn to start, for last time we played this
game Rosa started the guessing.”

• Gaia does not agree. “How can we know you are not cheating
on us? Please write down the number, so you can show it to us
afterwards as a proof.”

• Jan writes a number on a piece of paper, hidden from Gaia and
Rosa.

• After a number of rounds, Jan announces: “Rosa, you have won.”

• Jan shows the piece of paper as a proof.

Jan, Gaia and Rosa Play the Number Guessing Game (again)

Jan, Gaia and Rosa Play the Number Guessing Game (again)

register

Registers, Fixing a Number

At the point where either Gaia or Rosa demands that the secret num-
ber gets written down, and that Jan shows it as a proof that the proce-
dure was honest, the important notion of a register arises.

The register allows Jan to prove that he knew (had fixed) the number
beforehand.

What Does it Mean to Know a Number?

We are working in the context of epistemic logic.

To know an integer number n is to be able distinguish a world
where n is written in some register from all possible worlds
where an integer number n′ different from n is written in that
register.

This can be made more precise, by clearly distinguishing between a
register and its contents.

And the representation can be made more concise, by lumping to-
gether all situations where the register does not contain the number.

To know an integer number n is to know the contents ṅ of
register n, not to know a number is not to have access to
register n.

Jan knows a number

Jan knows n, the two children do not know n. We use n for the
register, ṅ for the value of that register (its contents).

This leads to the following register model.

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

0 is a world that has register n, with number ṅ = 6 stored in it, while
1 differs from 0 in that it also has this register, but with all the possible
values in it that differ from ṅ.

Gaia (dots) and Rosa (dashes) do not have access to the register.

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

“ten” . . . “no”

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

“ten” . . . “no”

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9}

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

“ten” . . . “no”

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9}

“six” . . . “yes”

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}

“ten” . . . “no”

0 : n 1 : n
n 7→ 6

n 7→ {1, 2, 3, 4, 5, 7, 8, 9}

“six” . . . “yes”

0 : n n 7→ 6

Gaia Makes a Guess

Use g for the guess of Gaia. Gaia knows her guess, but has not yet
revealed it to the others: solid lines for Jan, dotted lines for Gaia,
dashed lines for Rosa.

0 : ng 1 : ng

2 : ng 3 : ng

n 7→ 6, n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}
g 7→ 5, g 7→ {1, 2, 3, 4, 6, 7, 8, 9, 10}

Without registers, this blows up to a model with 100 worlds.

k registers, each of m bits, blow up to (2m)k possibilities.

Gaia Reveals Her Guess

Gaia reveals the contents of her register: g = 5.

Gaia Reveals Her Guess

Gaia reveals the contents of her register: g = 5.

0 : ng 1 : ng
n 7→ 6, n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}
g 7→ 5

Gaia Reveals Her Guess

Gaia reveals the contents of her register: g = 5.

0 : ng 1 : ng
n 7→ 6, n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}
g 7→ 5

Jan states that the guess is wrong: n 6= g.

Gaia Reveals Her Guess

Gaia reveals the contents of her register: g = 5.

0 : ng 1 : ng
n 7→ 6, n 7→ {1, 2, 3, 4, 5, 7, 8, 9, 10}
g 7→ 5

Jan states that the guess is wrong: n 6= g.

0 : ng 1 : ng
n 7→ 6, n 7→ {1, 2, 3, 4, 7, 8, 9, 10}
g 7→ 5

Names and the Meaning of Equality Statements [Mus89]

Names and the Meaning of Equality Statements [Mus89]

Names and the Meaning of Equality Statements [Mus89]

Chapter 8: Names.

Registers are like Names for Numbers

• Creating a register and writing a number in it can be viewed as a
baptism.

• Register equality statements are like name equality statements.

• Compare n = g with “Hesperus is Phosphorus”.

• Reread Chapter 8 of Reinhard’s PhD Thesis.

Truth of Equality Statements in Register Models

• It seems reasonable to represent the announcement of Gaia’s guess
as the announcement of the equality statement g = ġ.

• Since g means that the register does contain a different value from
ġ, the statement g = ġ is false in both g worlds, so these drop out
of the picture.

• Jan can respond to Gaia’s guess with n = g (this is what “you
guessed it” means: your guess equals my number).

• n = g is different from n = ṅ.

Truth of (In)equality Statements in Register Models

• The difference between n = g and n = ṅ can perhaps be seen
more clearly in the negative case.

• “You have it wrong” is paraprased as n 6= g, not as n 6= ṅ.

• In a world where g and n are both true, the equality n = g can be
checked by checking whether ġ = ṅ.

• In a world where g is true and n false, the equality n = g means
that every value of n except for ṅ equals g, which is certainly
false (except in a domain with just two numbers, in case ṅ and ġ

are different).

• In a world where g and n are both false the equality n = g means
that every value for g except ġ equals every value of n except ṅ,
which is certainly false.

Register Language for Guessing Games

Let p range over P and let N range over Z. Let i range over the set of
agents I .

ϕ ::= > | p | p = E | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [!p = E]ϕ | [!p 6= E]ϕ

E ::= p | N

Update Operations

Revealing positive or negative information about p:

! p = E

“You guessed it”

! p 6= E

“Your guess was wrong”

Interpretations of ! p = E and ! p 6= E are action models in the sense
of [BMS98].

Interpretation in Register Models

• A register assignment function is a function from registers to in-
tegers.

• A register assignment function h agrees with a possible w (nota-
tion w (h) if q ∈ Vw iff h(q) = q̇.

• Examples of (Dis-)Agreement:

0 : ng 1 : ng
n 7→ 6, n 7→ {1..4, 7..10}
g 7→ 5

The function h = {n 7→ 6, g 7→ 5} agrees with 0, but not with 1.

The function h′ = {n 7→ 3, g 7→ 5} agrees with 1 but not with 0.

Interpretation in Register Models:M, w, h |= ϕ

Let h be a register assignment that agrees with w.

M, w, h |= > always
M, w, h |= p iff p ∈ V (w)

M, w, h |= p1 = p2 iff h(p1) = h(p2)

M, w, h |= p = N iff h(p) = N

M, w, h |= ¬ϕ iff notM, w, h |= ϕ

M, w, h |= ϕ1 ∧ ϕ2 iff M, w, h |= ϕ1 andM, w, h |= ϕ2

M, w, h |= Kiϕ iff (w,w′) ∈ Ri and w′ (h′ implyM, w′, h′ |= ϕ

M, w, h |= [! p = E]ϕ iff M, w, h |= p = E impliesMp=E, w, h |= ϕ

M, w, h |= [! p 6= E]ϕ iff M, w, h |= p 6= E impliesMp 6=E, w, h |= ϕ

Truth and Falsity at a World

From truth at a register assignment to truth and falsity at a world:

M, w |= ϕ iff ∀h with w (h :M, w, h |= ϕ.

M, w =|ϕ iff ∀h with w (h :M, w, h |= ¬ϕ.

Truth Value Gaps

0 : n 1 : n
n 7→ 6

n 7→ {1..5, 7..10}

n = 7 is false in 0.

n = 7 is neither true nor false in 1.

n 6= 7 is true in 0.

n 6= 7 is neither true nor false in 1.

Now Let’s Look at Probabilities

0 : n 1 : n

1 91 4294967295

Numbers of agreeing assignments for register size 10.

Numbers of agreeing assignments for register size of 32 bits.

Now Let’s Look at Probabilities

0 : n 1 : n

1 91 4294967295

Numbers of agreeing assignments for register size 10.

Numbers of agreeing assignments for register size of 32 bits.

With 64 bit size: 264 − 1 = 18446744073709551615 agreeing assign-
ments for world 1.

Back to Christiaan Huygens

• Suppose possible guesses run from 1 to 10.

• A fair guessing game would have 10 participants. Each guess
corresponds with a ticket. Winning ticket gets the stake.

• Then a ticket is worth 1
10th of the stake.

• World 0 corresponds to a single ticket, world 1 corresponds to a
set of 9 tickets.

• With a register size of 64 bits, a ticket is worth 1/18446744073709551616

of the stake, and world 0 corresponds to a single ticket, world 1

corresponds to 18446744073709551615 tickets.

• This can be worked out in a logic that combines probability the-
ory with epistemic operators [Hal03, Koo03, ES].

Monte Carlo Checking of (In)Equality Statements

Suppose the register size is large enough, say 64 bits.

Then in a world where n is false, there are

264 − 1 = 18446744073709551615

possibilities for the value of n.

Thus, in a world where n is false, equality statements n = X will be
false for almost all values X .

Equality and inequality statements can be checked by means an ap-
proximate (Monte Carlo) model checking algorithm.

Monte Carlo Style Model Checking

M, w ˙|= ϕ iff for “enough” h with w (h :M, w, h |= ϕ.

Method:

• Randomly generate a list of n agreeing assignments h1, . . . , hn

for w.

• CheckM, w, hi |= ϕ for each hi in the list.

• The probability that there is disagreement among the outcomes
can be made arbitrarily small.

Truth Value Gaps Almost Closed

0 : n 7→ 6 1 : n 7→ {M = −263..263 − 1} − {6}
1

18446744073709551615

n = 7 is false in 0.

n = 7 is almost false in 1.

n 6= 7 is true in 0.

n 6= 7 is almost true in 1.

Article of faith of cryptanalysis: “Brute force attacks on number se-
crets are impossible.”

Register Creation

Fix a large register size. Let M..K be the bounds of the register (say
M = −263, K = 263 − 1).

Add to the language:

ϕ ::= [p
i← N]ϕ

p
i← N is the command to link p to the integer number N with the

link known only to agent i. It is assumed that N fits the register size.

Interpretation: [[p i← N]] as the action model (in the sense of [BMS98]):

e : p := >, ṗ := N e : p := ⊥
I − {i}

Update Example

Start with the blissful ignorance unit model:

0

Update Example

Start with the blissful ignorance unit model:

0

n
j← 6

Update Example

Start with the blissful ignorance unit model:

0

n
j← 6

0 : n 1 : n n 7→ 6, n 7→ {M..K} − {6}

Update Example

Start with the blissful ignorance unit model:

0

n
j← 6

0 : n 1 : n n 7→ 6, n 7→ {M..K} − {6}

g
g← 5

Update Example

Start with the blissful ignorance unit model:

0

n
j← 6

0 : n 1 : n n 7→ 6, n 7→ {M..K} − {6}

g
g← 5

0 : ng 1 : ng

2 : ng 3 : ng

n 7→ 6, n 7→ {M..K} − {6}
g 7→ 5, g 7→ {M..K} − {5}

0 : ng 1 : ng

2 : ng 3 : ng

n 7→ 6, n 7→ {M..K} − {6}
g 7→ 5, g 7→ {M..K} − {5}

n 6= g

0 : ng 1 : ng

2 : ng 3 : ng

n 7→ 6, n 7→ {M..K} − {6}
g 7→ 5, g 7→ {M..K} − {5}

n 6= g

0 : ng 1 : ng

2 : ng 3 : ng

n 7→ 6, n 7→ {M..K} − {6}
g 7→ 5, g 7→ {M..K} − {5}

Communication: “a sends ϕ to b”

Sequence of commands:

?Kaϕ; Open b; !ϕ; Close b

• ?Kaϕ tests whether Kaϕ is true in the actual world.

• Open b adds b to the set of agents that are listening.

• !ϕ is the announcement of ϕ.

• Close b removes b from the set of agents that are listening.

• As far as b is concerned, the information ϕ could come from any-
where: no authentication.

• Anyone who is listening receives the info: the channel is insecure.

Fast Modular Arithmetic

11 + 4 = 15 ≡ 3 (mod 12).

Modular division, modular inverse

Modular division is the same as multiplication by modular inverse.
Modular inverses only exist for numbers that are co-prime with their
modulus.

invM :: Integer -> Integer -> Integer
invM x n = let

(u,v) = fct_gcd x n
copr = x*u + v*n == 1
i = if signum u == 1 then u else u+n

in
if copr then i else error "no inverse"

This uses the extended Euclidean algorithm for GCD.

The Extended Euclidean Algorithm

fct_gcd :: Integer -> Integer
-> (Integer,Integer)

fct_gcd a b =
if b == 0
then (1,0)
else

let
(q,r) = quotRem a b
(s,t) = fct_gcd b r

in (t, s - q*t)

Fast Modular Exponentiation

Modular exponentiation of xy by repeatedly squaring modulo N .

E.g., x33 mod 5 can be computed by means of

x33 mod 5 = x32 mod 5× x mod 5.

x32 (mod N) is computed in five steps by means of repeatedly squar-
ing modulo N :

x mod N → x2 mod N → x4 mod N → . . .→ x32 mod N.

Fast Modular Exponentiation

Modular exponentiation of xy by repeatedly squaring modulo N .

E.g., x33 mod 5 can be computed by means of

x33 mod 5 = x32 mod 5× x mod 5.

x32 (mod N) is computed in five steps by means of repeatedly squar-
ing modulo N :

x mod N → x2 mod N → x4 mod N → . . .→ x32 mod N.

exM _ 0 _ = 1
exM x y n = let

z = exM x (y ‘div‘ 2) n
w = rem (z*z) n

in
if even y then w else rem (x*w) n

Feasible Computation

• Fast algorithms for primality testing (e.g., the probabilistic Miller-
Rabin test [Mil76, Rab80]).

• Fast algorithms for co-primality testing (Euclid’s GCD algorithm)
and for finding modular inverses (Euclid’s extended GCD algo-
rithm, see above).

• Fast algorithms for addition and multiplication modulo, and for
exponentiation modulo (see above, and compare [DK02, PP09]).

• + Articles of faith: factorisation, discrete logarithm, . . . , are not
feasible.

• Now refine the meaning of “knowing a number”: I know (i) the
numbers that I can look up in an accessible register, and (ii) the
numbers that I can feasibly compute from numbers I know.

Application: Diffie-Hellman Key Exchange [DH76]

Whitfield Diffie – Martin Hellman

Diffie-Hellman Key Exchange Protocol

Key Exchange Over Insecure Channel

1. Alice and Bob agree on a large prime p and a base g < p

such that g and p− 1 are co-prime.

2. Alice picks a secret a and sends ga mod p = A to Bob.

3. Bob picks a secret b and sends gb mod p = B to Alice.

4. Alice calculates k = Ba mod p.

5. Bob calculates k = Ab mod p.

6. They now have a shared key k. This is because
k = (ga)b = (gb)a mod p.

Use of a Shared Secret Key for Secure Communication

Let p be the prime that Alice and Bob have agreed on, and let k be
their shared key. Then message m is encoded as

m× k mod p.

Such messages can be decoded by both Alice and Bob.

Alice knows p, k, gb and a. She decodes cipher c with

c× (gb)(p−1)−a mod p.

Bob knows p, k, ga and b. He decodes cipher c with

c× (ga)(p−1)−b mod p.

Behind this: Fermat’s Little Theorem

Pierre de Fermat (1601–1665)

If p is prime, then for every 1 ≤ a < p: ap−1 ≡ 1 (mod p).

Example

Prelude> [aˆ28 ‘mod‘ 29 | a <- [1..28]]
[1,1]

Explanation

We have:

(ga)(p−1)−b = ga((p−1)−b) = ga(p−1) × g−ab = (gp−1)a × g−ab

Fermat
= 1a × g−ab = g−ab mod p,

and therefore:

c× (ga)(p−1)−b = (m× gab)× g−ab = m× (gab × g−ab) = m mod p.

Diffie-Hellman Key Exchange as a Register Language Protocol

a
i← N ; A

i← ga mod p ;

Open j ; !x = A ; Close j ;

b
j←M ; B

j← gb mod p ;

Open i ; !y = B ; Close i ;

k
i← ya mod p ;

k′
j← xb mod p ;

?k = k′

Program for Epistemic Crypto Logic

• Formulate complete logics. A complete calculus for register logic
has axioms for propositional logic, S5 axioms for the Ki opera-
tors, K axioms for the A operators, Modus Ponens, necessitation
for Ki and A, and reduction axioms for the command operators,
in the style of [BvEK06].

• Build an efficient model checker for this language, using register
models as defined in this talk. See [Gat13] for a first prototype.

• Use the model checker for modelling cryptographic protocols,
plus attacks on them.

Lesson For Formal Communication Studies

• Semantics of Natural Language⇒ Formal Communication Stud-
ies

• Focus on Representation of Update

• Parallels Between Natural and Programming Languages

• Haskell as Computational PTQ

Prelude> :t all
all :: (a -> Bool) -> [a] -> Bool
Prelude> :t any
any :: (a -> Bool) -> [a] -> Bool

References

[BMS98] A. Baltag, L.S. Moss, and S. Solecki. The logic of pub-
lic announcements, common knowledge, and private sus-
picions. In I. Bilboa, editor, Proceedings of TARK’98,
pages 43–56, 1998.

[BvEK06] J. van Benthem, J. van Eijck, and B. Kooi. Logics of com-
munication and change. Information and Computation,
204(11):1620–1662, 2006.

[DH76] W. Diffie and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[DK02] Hans Delfs and Helmut Knebl. Introduction To Cryptog-
raphy — Principles and Applications. Springer, 2002.

[ES] Jan van Eijck and François Schwarzentruber. Epistemic
probability logic simplified. Under Submission.

[Fre80] Hans Freudenthal. Huygens’ foundations of probability.
Historia Mathematica, 7:113–117, 1980.

[Gat13] Malvin Gattinger. Epistemic crypto logic — functional
programming and model checking of cryptographic pro-
tocols. Technical report, ILLC, Amsterdam, 2013. Exam
paper for the course ‘Functional Specification of Algo-
rithms’.

[Hal03] J. Halpern. Reasoning About Uncertainty. MIT Press,
2003.

[Huy60] Christiaan Huygens. Van Rekeningh in Spelen van
Geluck. 1660. About Calculation in Hazard Games; Latin:
De ratociniis in Ludo aleae.

[Koo03] Barteld P. Kooi. Knowledge, Chance, and Change. PhD
thesis, Groningen University, 2003.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primal-
ity. Journal of Computer and System Sciences, 13(3):300–
317, 1976.

[Mus89] R. Muskens. Meaning and Partiality. PhD thesis, Univer-
sity of Amsterdam, 1989.

[PP09] Christof Paar and Jan Pelzl. Understanding Cryptography
— A Textbook for Students and Practitioners. Springer,
2009.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing pri-
mality. Journal of Number Theory, 12(1):128–138, 1980.

