
Normal Forms for Characteristic Functions
on �-ary Relations

JAN VAN EIJCK, Centre for Mathematics and Computer Science (CWI),
Amsterdam and Uil-OTS, Utrecht, The Netherlands.
E-mail: Jan.van.Eijck@cwi.nl

Abstract
Functions of type ��� are characteristic functions on �-ary relations. Keenan established their importance for natural language
semantics, by showing that natural language has many examples of irreducible type ��� functions, i.e. functions of type ���
that cannot be represented as compositions of unary functions. Keenan proposed some tests for reducibility, and Dekker
improved on these by proposing an invariance condition that characterizes the functions with a reducible counterpart with the
same behaviour on product relations. The present paper generalizes the notion of reducibility (a quantifier is reducible if it
can be represented as a composition of quantifiers of lesser, but not necessarily unary, types), proposes a direct criterion for
reducibility, and establishes a diamond theorem and a normal form theorem for reduction. These results are then used to show
that every positive ��� function has a unique representation as a composition of positive irreducible functions, and to give an
algorithm for finding this representation. With these formal tools it can be established that natural language has examples of
�-ary quantificational expressions that cannot be reduced to any composition of quantifiers of lesser degree.

Keywords: Semantics of natural language, quantifier decomposition, Fregean versus non-Fregean quantifiers, polyadic quan-

tification, compositionality.

1 Introduction

Instead of analysing the sentence Every lawyer cheated a firm as a relation between the CN property
of being a lawyer and the VP property of cheating firms (namely the relation of inclusion), it is also
possible to look at the complex expression Every lawyer a firm, and interpret that as a function
that takes a relation (a denotation of a transitive verb, such as cheated, defended) and produces a
truth value. Similarly, Every firm received a letter from some lawyer can be analysed as stating that
the set of firms is included in the set of letters received from some lawyer, but it is also possible to
look at the complex expression Every firm a letter from some lawyer, and even at Every firm
a letter some lawyer. The interpretation of Every firm a letter from some lawyer is again a
function from binary relations to truth values, the interpretation of Every firm a letter some
lawyer is a function from ternary relations to truth values.

This gives two ways to analyse Every lawyer a firm: as a composition of the interpretation
of Every lawyer with that of a firm, or, alternatively, as a function that classifies binary relations.
In this case, the first analysis seems preferable, but in many cases only the alternative analysis is
available. Consider Every lawyer cheated a different firm. This means that the relation of cheating,
when restricted to the set of pairs ��� �� with � a lawyer and � a firm, is an injective function. There
is no way to express this as a relation between an CN property (being a lawyer) and a VP property.
Intuitively, cheating a different firm does not express a property.

If three noun phrases are present, as in Every executive awarded himself a huge bonus, the question
arises how this should be analysed:

� As a complex quantifier every executive himself a huge bonus that combines with a ternary

Vol. 15 No. 2, c� The Author, 2005. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org
doi:10.1093/logcom/exi003

86 Normal Forms for Characteristic Functions on �-ary Relations

relation?

� As as composition of the interpretation of every executive with a complex quantifier for himself
a huge bonus?

� As a compositition of a complex quantifier for every executive himself and a quantifier for a
huge bonus?

� As a composition of three quantifiers for every executive, himself and a huge bonus?

In cases with four noun phrases there are even more possibilities. This paper will give a full charac-
terization of what is the simplest compositional analysis in every conceivable case.

2 Functions, types, lifting, decomposition

Following Keenan [5] we call a function from properties (unary relations) to truth values a type
��� function, a function from binary relations to truth values a type ��� function, and, in general, a
function from �-ary relations to truth values a type ��� function. Note that a type ��� function is in
fact a characteristic function on �-ary relations.

Let� be the domain of discourse. Let � be the type of an object in �, and let � be the type of truth
values.

On the type �, we use � for truth and � for falsehood, and we allow the usual Boolean functions
for conjunction, disjunction and negation. We write ��� as � � �, and similarly for disjunctions.

We will work with a higher order logic that allows higher order abstraction and application. Ex-
pressions and types look like this:

� ��� 	 � ������ �
	 �� �
�	�� � � � � 	�� � � � ���� � � � � ���

� ��� � � � � �� � �� � �� 	 � � � 	 ���

These formation rules are constrained by a welltypedness criterion. We will use � �� � to express
that expression� has type � . The welltypedness rules are:

�� �� �� � �� �� �� ��
������ �� ��

	 �� �� � �� ��

	 � � �� �� � ��

	� �� �� � � � 	� �� �� � �� ����

�	�� � � � � 	�� � � �� ��� 	 � � � 	 ���� ����

�� �� �� � � � �� �� ��
���� � � � � ��� �� �� 	 � � � 	 ��

Note the following:

� ��� abbreviates the type ��� ��� �,

� ��� abbreviates the type ���	 ��� ��� �,

� ��� abbreviates the type ���	 � � � 	 ��� �� �
� times

� ��� �.

Normal Forms for Characteristic Functions on �-ary Relations 87

Using �� for ��	 � � � 	 ��� �� �
� times

, we can say that ��� abbreviates the type ��� � ��� �. We will use � for

functions of types ��� � ��� � (with �
 �) that yield true for any argument, i.e. � is the quantifier

��. Similarly, � is the quantifier
�� (the quantifier that yields false for any argument).

If �� �� � � then ��� 	� has type �, and
	 ���� 	� has type �� �.
Sometimes set notation is more convenient than lambda notation. For example, � 	 � is more

readable than the equivalent lambda expression
�	� �� � ��	 � ���. For this reason we will occa-
sionally switch back and forth between lambda notation and set notation:
	 � ��� 	� corresponds
to the set �	 � ��� 	��. Also, characteristic functions will sometimes be applied to sets rather than
the corresponding lambda expressions. So if � has type �� � �� � �, we will sometimes write
���	 � ��� 	��� � � instead of ��
	 ���� 	�� � � to express that � classifies the set as true.

We will occasionally omit application parentheses, using the convention that application asso-
ciates to the left. Thus, �� �� �� abbreviates ���� ��� ���.

Abstraction over tuples can be used for currying and uncurrying of functions, as follows. If
 �� �� � � and 	 �� �� � �� �, then:

	
� � �	� �� �� ��� � ��� ��� �� ���

This is the currying operation. If �� �� �� � and 	 �� �� � �� �, then:

�	� �� �	� �� ��� �� ��� ��� � ���

This is the uncurrying operation.
A type ��� function � on � can be lifted to a function �� ��������� from ��� ��-ary relations to

�-ary relations by means of the following lift operator:

�
������� �
�

�	�� � � � � 	�� � ��
	 ��	�� � � � � 	�� 	���

Note that if � �� ��� and �� ���� � �, 	� �� �� � � � � 	� �� �� 	 �� � (i.e. is an ��� ��-ary relation
and 	�� 	 are individual variables) then ����������� is of the required type, i.e. ����������� ��
����� � ��� ��� � ��.

Similarly, a type ��� function � can be lifted to a function �� �������� � from �� � ��-ary
relations to�-ary relations, by means of:

�
������� �

�

�	�� � � � � 	�� � � �
�	���� � � � � 	���� ��	�� � � � � 	�� 	���� � � � � 	������

If � �� ��� and �� ���� � �, then ���������� � �� ����� � ��� ��� � ��, i.e. ���������� �
maps ��� ��-ary relations to�-ary relations.

Lifted type ��� functions can then be composed by means of the following operation (assume
 �� ���� � �):

����������� Æ ��������������� �
 � �������������������������������

Note that ����������� Æ ��������������� maps �� � ��-ary relations to �-ary relations, i.e. it is of
type ����� � ��� ��� � ��.

For the particular case of binary relations, we get, on the assumption that �� � � � �:

� Æ ������� �
 � ������ � ��

88 Normal Forms for Characteristic Functions on �-ary Relations

If � �� ��� equals � Æ ������� for some � �� ���� � �� ���, we say that � can be decomposed into �
and �, or that � reduces to a composition of � and �.

Clearly, many type ��� functions can be decomposed in this way into pairs of type ��� functions.
For instance, the type ��� function � that interprets the complex expression Every lawyer a firm
can be decomposed into a type ��� function � that interprets a firm and a type ��� function � that
interprets every lawyer, for � Æ ������� equals � .

More generally, if � �� ��� equals

�� Æ ��
������ Æ � � � Æ ��

����������

for some �� �� ���� � � � � �� �� ���, we say that � can be decomposed into (or reduced to) ��� � � � � ��.
Thus, the function � of type ��� that interprets the quantification in

Every firm a letter some lawyer

(on its natural scope reading) is a composition ��Æ��
������Æ��

������, where �� is the interpretation
of every firm, �� is the interpretation of a letter, and �� is the interpretation of some lawyer.

In the rest of this paper, we will leave the lifting operations implicit. We will use �� Æ �� as
shorthand for �� Æ ��

������, use �� Æ �� Æ �� as shorthand for �� Æ ��
������ Æ ��

������, and so on.
More generally, if � �� ��� and� �� ���, then � Æ� is shorthand for the function of type �����

that results from the following lift:
� Æ ������������

Spelled out in full, this is the following function (assume �� ���� � �):

 � � �
�	�� � � � � 	�� ���
�	���� � � � � 	���� ��	�� � � � � 	�� 	���� � � � � 	�������

Call a function � of type ��� positive if � �� � �, and negative otherwise. The interpretations of
some firm and every lawyer are positive, those of no lawyer and not every firm are negative.

When studying compositions of functions � Æ �, we will always assume, without loss of gener-
ality, that � is positive: if not, one can simply replace � by �� and � by ��. More precisely, if
� �� ���, � �� ���, then:

�� �
 � ����

�� �
� � �
�	�� � � � � 	�� � ����	�� � � � � 	�����

Clearly, � Æ� �� ��� �� is the same function as �� Æ �� �� ��� ��.

3 Failures of decomposition

In [5] it is demonstrated that there are cases where quantifiers of type ��� or higher are not decom-
posable. Keenan shows that the following sentence exhibits an example of non-decomposable type
��� quantification:

(3.1) Different students answered different questions.

For sentence (3.1) to make sense, we have to assume that there are at least two students. The sentence
is true if there is a one-to-one correspondence between students and sets of questions they answered.
Thus, Different students different questions is interpreted as the type ��� function expressing
that its argument relation satisfies the property that all the �, with � ranging over students, are

Normal Forms for Characteristic Functions on �-ary Relations 89

different (here � is used as shorthand for �	 � ��� 	��). Keenan has an ingenious method to prove
this fact. He states and proves a theorem to the effect that for any two type ��� functions ��� that
are reducible it holds that these functions are equal iff they act the same on Cartesian products, i.e. if
for all subsets ��� of the domain of discourse � it holds that � �� 	�� � ��� 	�� (see Section
4 below).

How can this be used to show that a type ��� function � is non-reducible? Here is how, for the
example of (3.1).

Let � be the type ��� function that interprets different students different questions. Assume
that � is reducible.

Let � be the set of students and� the set of questions. Assume there are at least two students and
at least two questions, for otherwise statement (3.1) becomes trivial. Let�	� be a product relation,
i.e. a relation that links every object in � to every object in �. If there are two students in � � �,
then they bear�	� to the same questions, namely, no questions. If there are two students in ���,
then the questions they bear �	� to are again the same, namely � ��. Again, � ��	�� � �.

Recall that � is the type ��� function that is false for any argument. Then, by the above, � �� �
�� Æ ���� for any product relation .

By Keenan’s theorem, it follows from this � is equal to � Æ �. Contradiction, for obviously, �
is different from the composition � Æ �, for � is true of ����� ���� ���� ���� (with ��� �� � � and
��� �� � �), and � Æ � is not. Thus, the assumption that � is reducible must be false. � is not
reducible.

Here are some further examples of quantifiers that Keenan shows to be not reducible.

(3.2) Three boys in my class dated the same girl.

(3.3) All girls fancied the same boy.

(3.4) John criticized Bill and no-one else criticized anyone else.

(3.5) The women at the wedding all wore different hats.

(3.6) Every student criticized everyone but himself.

(3.7) The students criticized each other.

(3.8) Two detectives interviewed a total of twenty witnesses.

(3.9) The boys gave the same presents to the same girlfriends on the same occasions.

(3.10) Every student gave different answers to different questions.

Here are some example quantifiers, with their types. Restricted universal quantifier, type ���.

forall�
	 � ��	� �� �	��	� ��	���

Transitivity quantifier, type ���.

Tr
�	� �� � ��	� �� �� �	�����	� ��� ������� ��� ��	� �����

Injectivity quantifier, type ���.

Inj
�	� �� � ��	� �� �� �	���	 �� � � �������	� �� � ���� �� � � �� ����

Set injectivity quantifier, type ���.

INJ
�	� �� � ��	� �� �� �	���	 �� � �
� � ��	� �� ��
������ ����

The set injectivity quantifier captures the meaning of Different students gave different answers.

90 Normal Forms for Characteristic Functions on �-ary Relations

4 Crossing the Frege boundary

This section gives Keenan’s theorem that underpins his method for establishing the irreducibility
facts mentioned above, plus Dekker’s generalization and Dekker’s indirect criterion for irreducibility
[3]. Section 5 proposes a direct criterion for (ir)reducibility.

Keenan [5] starts out from the following Fact about the behaviour of type ��� functions on prod-
ucts:

FACT 4.1 (Keenan)
Let � be a positive function of type ��� and let ��� � �. Then:

��� 	�� �

�
� if ���� � �
 otherwise.

PROOF. Let � �� ��� be a positive function. Let ��� � �.
First assume � � . Then � 	� � , and

��� 	�� � �� � � ���� � � � ��� ��� � � � ��

� �

From � � and ��� 	�� � , the Fact follows directly.
Now assume � � . Again � 	 � � , and ��� 	 �� � . From the positivity of � we get

���� � ��� � �, and the Fact follows.
Finally, assume � �� � � �� . Now � 	� �� , and:

��� 	�� � �� � � � ���� � � � ��� ��� � � 	�� � ��

� �� � � � � � �� ���� � � � �� � �� � �� because f positive

� �� � � � ���� � ��

�

�
� if ���� � �
 otherwise.

From this we get immediately:

FACT 4.2 (Keenan)
Let �� � be positive functions of type ���, and let ��� � �. Then:

�� Æ ���� 	�� � � iff ��� � � �� ���� � ��

Recall that a ��� function � is reducible if there are type ��� functions �� � with � � � Æ �.

THEOREM 4.3 (Keenan)
If � and � are reducible type ��� functions, then � � � iff for all ��� � � it holds that � �� 	
�� � ��� 	��.

PROOF. If � � � then their behaviour on products is the same.
For the other direction, assume ��� have the same behaviour on products.
First suppose ��� positive. Then, because of reducibility there are positive � �� ��� ��� �� with

� � �� Æ �� and � � �� Æ ��. Because ��� act the same on products, using Fact 4.2 we see that
�� � �� and �� � ��. Thus � � �� Æ �� � �� Æ �� � �.

Normal Forms for Characteristic Functions on �-ary Relations 91

Now assume ��� negative. Then, because of reducibility there are � �� ��� ��� ��, with ��� ��
negative, ��� �� positive, � � �� Æ �� and � � �� Æ ��.

Clearly, if �� � ��, then by Fact 4.2, �� � ��, and � � �� Æ �� � �� Æ �� � �.
If �� � � � ����� �� ����� � �, then for any � ,

��� Æ ����� 	�� � ���� � � � ��� Æ ����� 	���

It follows that �� � �� � � �� ���, and � � � � � �� ���.

Dekker [3] generalizes Fact 4.1 to Fact 4.4, and Theorem 4.3 to the case of reducing a type ���
function to � functions of type ��� (�-reducibility).

FACT 4.4 (Dekker)
Let � � �� Æ � � � Æ ��, with all �� positive. Then for all �� � �:

� ��� 	 � � � 	��� � � � ���� � � � �� ������ � ���

PROOF. Suppose � ��� 	 � � � 	 ��� � �. Assume there is a � with ������ � �. Without loss of
generality we may assume that for � ! � �, ������ � �. Then, from � � �� Æ � � � Æ ��, with
�� � applications of (an obvious generalization of) Fact 4.1:

� ��� 	 � � � 	��� � ��� Æ � � � Æ ������ 	 � � � 	����

From this, with ������ � �, and again Fact 4.1,

� ��� 	 � � � 	��� � ��� Æ � � � Æ ��������

and from this, by positivity of the � , � ��� 	 � � � 	 ��� � � �� � �, and contradiction with the
given about � .

For the other direction, assume �� � � � � �: ������ � �. Then with � applications of Fact 4.1,
� ��� 	 � � � 	��� � �.

THEOREM 4.5 (Dekker)
If � and� are positive �-reducible type ��� functions, then � � � iff �� �� � � � � �� � �: � ���	
� � � 	��� � ���� 	 � � � 	���.

PROOF. If ��� are the same, then they behave the same on products.
Conversely, assume � � �� Æ � � � Æ �� and � � �� Æ � � � Æ ��, with all the ��� �� positive, and

suppose � and � act the same on products. Then: � ��� 	 � � � 	 ��� � � iff (Fact 4.4) for all
� � � � � � � it holds that ������ � �. Similarly for �. Since � and � act the same on products,
the �� must be equal to the ��, whence � � �.

Dekker also succeeds in finding suitable candidate type ��� functions for this reduction, provided
a function satisfies the following condition of invariance.

DEFINITION 4.6 (Invariance, Dekker)
A type ��� function � is invariant if for all non-empty ��� � � � � �� � � with � ��� 	 � � � 	 �� 	
� � � 	��� � � the following holds: either for all non-empty� �

�:

� ��� 	 � � � 	���� 	�
�

� 	���� 	 � � � 	��� � ��

or for all non-empty��

� �! �� ��:

� ���

� 	 � � � 	��

��� 	�� 	�
�

��� 	 � � � 	��

�� � ��

92 Normal Forms for Characteristic Functions on �-ary Relations

The importance of invariance is that it gives us a means of defining positive functions � � �� ���
(for � � � � �) from a positive invariant function � of type ���. The recipe is this. To determine
whether ����� � �, check whether � takes the value � for arbitrary choices of the other argument
places in the product

�� 	 � � � 	���� 	�	���� 	 � � � 	���

THEOREM 4.7 (Dekker)
A positive type ��� function � is invariant iff � has a product equivalent �-reducible correlate�.

PROOF. Only if: Assume that � is invariant and positive. Then ��� � � � � �� can be defined by means
of:

���� �� �

���� �� � � � �� � non-empty��� � � � � ����� ����� � � � � �� � ��

� ��� 	 � � � 	���� 	�	���� 	 � � � 	��� � ��

By definition, all �� are positive. By invariance and positivity of � , � ��� 	 � � � 	��� � � iff all
�� are non-empty and ������ � �� � � � � ������ � � iff (Fact 4.4)

��� Æ � � � Æ ������ 	 � � � 	��� � ��

Conversely, assume that � � �� Æ � � � Æ �� is a function that acts like � on products. Assume � and
all �� positive. Suppose � ��� 	 � � � 	 ��� � �. Then by the fact that � and � act the same on
products:

��� Æ � � � Æ ������ 	 � � � 	��� � ��

Suppose ������ � �. Then, by Fact 4.4,

��� Æ � � � Æ �����
�

� 	 � � � 	��

��� 	�� 	�
�

��� 	 � � � 	��

�� � ��

Thus,
� ���

� 	 � � � 	��

��� 	�� 	�
�

��� 	 � � � 	��

�� � ��

Suppose on the other hand that ������ � �. Then by Fact 4.4, there is a ! �� � with ������ � �. In
this case, for any ��

�,

��� Æ � � � Æ ������ 	 � � � 	���� 	�
�

� 	���� 	 � � � 	��� � ��

i.e.
� ��� 	 � � � 	���� 	�

�

� 	���� 	 � � � 	��� � ��

It follows that � is invariant.

5 A direct criterion for reducibility

In this section we will show that if a positive function � �� ��� is �-reducible, then it is possible to
give explicit definitions of positive functions � � (� � � � �) with � � �� Æ � � � Æ ��. For this, we
first define what we mean by the reduct of a positive function � , and next show that � is �-reducible
iff � its equal to its reduct.

Normal Forms for Characteristic Functions on �-ary Relations 93

DEFINITION 5.1 (Reduct)
The reduct � � of a positive type ��� function � is defined as

� � � �� Æ � � � Æ ���

with �� given by:

���� �� �

���� �� � � � �� ���� � � � � ����� ����� � � � � �� � ��

� ��� 	 � � � 	���� 	�	���� 	 � � � 	��� � ��

Clearly, each �� is positive. This gives us a simple test for reducibility:

THEOREM 5.2
For all positive type ��� functions � : � � � � iff � is reducible.

PROOF. Only if. Immediate, for � � has the form �� Æ � � � Æ ��.
Conversely, suppose there are positive ��� � � � � �� with � � �� Æ � � � Æ ��. Let � � � �� Æ � � � Æ ��.

We have to show that �� Æ � � � Æ �� equals �� Æ � � � Æ ��. By Theorem 4.5 it is enough to show, for all
��� � � � � �� � �:

��� Æ � � � Æ ������ 	 � � � 	��� � ��� Æ � � � Æ ������ 	 � � � 	����

We have:
� ��� 	 � � � 	��� � ��� Æ � � � Æ ������ 	 � � � 	��� � �

iff (Fact 4.4)
���� � � � � � ������ � ��

iff (positivity of �)

���

�� � � � � �
�

���� �
�

���� � � � � �
�

��

� ���

� 	 � � � 	��

��� 	�� 	��

��� 	 � � � 	��� � � �� � �

iff (definition of ��)
������ � �

iff (Fact 4.4, definition of � �)
� ���� 	 � � � 	��� � ��

The test ‘Is � equal to its reduct?’ is easy to apply. An irreducibility argument based on it
is different from the irreducibility reasoning proposed by Dekker, where the irreducibility of the
symmetry function is deduced from the fact that the function is not invariant. In the case of invariant
functions that are irreducible (such as the transitivity function), Dekker needs a different test. In our
case, the test is the same for any function.

Take as an example the function � that characterizes the symmetric relations. Since this is a
negative function (for the empty relation is symmetric), switch to �� instead. To establish whether
�� is reducible, we must ask what ��� �� looks like. ��� �� � � Æ � with ��� �� � � � iff
�� � ��� �� with ��� ��� 	 �� � �. Such � surely exists, for � 	 � is non-symmetric
iff � �� �. So � � �, the constant � function. By the same reasoning we see that � � �. So
��� �� � � Æ � �� �� , and therefore �� is irreducible (and so is �).

94 Normal Forms for Characteristic Functions on �-ary Relations

Take the function� that characterizes transitive relations. Again, since this is a negative function
(the empty relation is transitive), we switch to its negation��. ����� � �Æ�, where ��� �� � � �
iff �� � ��� �� with ��� ��� 	 �� � �. This is never possible, for any product relation is
transitive, so � � �. Similarly, � � �, and ����� � � Æ � �� ��, and therefore �� is irreducible
(and so is �).

6 Reduction on the far side

The fact that a function is not �-reducible does not mean that it is in its simplest possible form. The
following definition allows us to discuss reduction on the far side of the Frege boundary.

DEFINITION 6.1 (�� �-reduction)
A function � of type ��� �� is �����-reducible if there are functions��" , of types ��� and ���
respectively, with � � � Æ" .

This is a useful concept, because it allows stating and answering further questions about reducibil-
ity of functions. Take for instance the quantification pattern of (6.1).

(6.1) Every prosecutor charged the same suspects with the same crimes.

(6.2) No lawyer argued for the same treatment of suspects of the same offence.

These examples are certainly not �-reducible, but they might well be ��� ��-reducible, in which case
they could be construed by composing a Fregean quantifier with a type ��� function.

Or take the pattern in (6.3).

(6.3) The prosecutors assisted each other in asking for identical punishments for identical offences.

This pattern is certainly not �-reducible, but it might well be ��� ��-reducible. For a compositional
treatment of quantification beyond the Frege boundary these issues are crucial.

If � �� and � � ��, then 	 � is the following ��� ��-ary relation:

�	�� � � � � 	�� 	���� � � � � 	���� ��	�� � � � � 	�� � ��	���� � � � � 	�����

Here is the corresponding set-theoretic expression:

����� � � � � ��� ����� � � � � ����� � �
��� � ���� � � � � ��� � � ����� � � � � ����� � ���

Thus, 	 � consists of all ��� ��-tuples over � that result from concatenating a tuple in with
one in �.

Fact 4.1 can be generalized as follows:

FACT 6.2
Let � be a positive function of type ���, and let � ��, � � ��. Then:

��	 �� �

�
 if ���� � �
 otherwise.

The following generalizations are also straightforward:

THEOREM 6.3
If � and � are �����-reducible functions of type �� � ��, then � � � holds iff � and � act the
same on products 	 � with � �� and � � ��.

Normal Forms for Characteristic Functions on �-ary Relations 95

THEOREM 6.4
Let � � � Æ" , with � �� ��� and" �� ��� both positive. Then: ��	�� � � iff��� � � and
"��� � �.

PROOF. Only if. Assume �� 	 �� � �. Suppose "��� � �. Then with Fact 6.2, �� 	
�� � ���. Contradiction with the positivity of �. Suppose "��� � �. Then with Fact 6.2,
��	 �� � ���, and done.

The other direction follows immediately from Fact 6.2.

The following definition will be our tool for characterizing the �����-reducible functions.

DEFINITION 6.5 (�� �-reduct)
The �����-reduct of a type ��� �� function � is the composition� Æ" , with � of type ��� and
" of type ���, with � defined by

��� � � �� �� � ��� ��	 �� � �

and" by
"��� � � �� � � ��� ��	 �� � ��

The notion of an �����-reduct provides us with a direct criterion for �����-reducibility:

THEOREM 6.6
A positive type ��� �� function � is equal to its own �����-reduct iff � is �����-reducible.

PROOF. Only if. Immediate, for the �����-reduct has the form � Æ" , with � of type ��� and "
of type ���.

Conversely, assume � � # Æ$, with both # and $ positive, # of type ���, $ of type ���.
Let � Æ" be the �����-reduct of �. We show that # � � and $ � " . For this, it is enough to
show that it holds for all � �� and � � �� that

�# Æ$�� 	 �� � �� Æ"�� 	 ���

Let � ��, � � ��. Then

��	 �� � � iff �# Æ$�� 	 �� � �

iff #�� � � and$��� � �

iff ��� � � (for there is an � with ��	 �� � �)

and

"��� � � (for there is an with �� 	 �� � �)

iff �� Æ"�� 	 �� � ��

We will show now that any positive type ��� function can be reduced in a unique manner to a
composition of irreducible functions. For this, we need to establish confluence of the reduction
process. This is stated in the following theorem.

THEOREM 6.7 (Diamond property)
If � � � Æ� � # Æ$ with � �� ��� and� �� ���,� ��,# �� ����,$ �� ��������, all of
�� ����#�$ positive, then there is a positive function" �� �� � ��� such that � � � Æ" Æ$.

96 Normal Forms for Characteristic Functions on �-ary Relations

� ����� � Æ���� ���
Æ$ ����� � Æ" Æ$

PROOF. Let"Æ$ � be the �������������-reduct of�. Let � �Æ" � be the ��������-reduct
of #. We show that � � � �, " � " �, $ � $ � by showing that � Æ" Æ$ � � � � Æ " � Æ$.
For this, it is enough to show that the two compounds have the same values for products	�	� ,
with � ��, � � ���

��, � � �������

.

�� Æ" Æ$ ��� 	 � 	 � � � �
iff ("�$ � is reduct of �) �� Æ��� 	 � 	 � � � �
iff (� � � Æ�) ��	 � 	 � � � �
iff (� � # Æ$) �# Æ$��	 � 	 � � � �
iff (� �� " � is reduct of#) �� � Æ" � Æ$��	 � 	 � � � ��

THEOREM 6.8 (Normal form)
Every positive � �� ��� is uniquely representable as

� � �� Æ � � � Æ ���

with �� positive and irreducible for all � � � � � � %. Moreover, on finite domains � there exists an
algorithm for finding this normal form NF���.

PROOF. � is irreducible if for no % with � � % �,� equals its �%� ��%� reduct. If� is irreducible,
NF��� � �. Otherwise, find the smallest % for which� equals its �%� ��%�-reduct �� Æ��, and put
NF��� � �� Æ NF����. Then �� is irreducible by virtue of its definition. By the diamond theorem,
the normal form is unique.

To find the normal form of � assuming that � is finite, note that for all % with � � % �, the
equality test between � and its �%� �� %� reduct is decidable.

Note that the �-reducible positive functions of type ��� are precisely the positive functions � for
which NF�� � � � �.

7 Application to natural language semantics

Let us look at some examples to see how all of this can be applied to natural language semantics.

(7.1) Some hermit forbade himself every pleasure.

Theorem 6.8 can be used to see that the type ��� quantifier in example (7.1) is ��� �� reducible, as
follows. The sentence is true on domain � iff there exist � � � and � � � with a reflexive
relation with at least one hermit in its domain, and � a set containing every pleasure, such that
	� � FORBID. This means that the type ��� quantifier in (7.1) is equal to its ��� �� reduct, so it
is ��� �� reducible.

(7.2) Some hermit forbade some hermit every pleasure.

The quantifier in (7.1) is not ��� �� reducible, for its ��� ��-reduct is (7.2), and this is not equivalent
to (7.1). So the normal form of the quantification in (7.1) is:

�
 � ��dom�� � HERMIT� �� � �	 �	� 	�� Æ
� � PLEASURE � ���FORBID��

Next, look at example (3.10), repeated here as (7.3) for convenience.

Normal Forms for Characteristic Functions on �-ary Relations 97

(7.3) Every student gave different answers to different questions.

This is reducible to forall� ÆInj, with forall� �� ��� and Inj��� �� ���. In other words, the quantifier
is ��� ��-reducible. By Keenan’s result, the quantifier from this example is not fully reducible. It
follows from the diamond theorem that it cannot be ��� ��-reducible.

We can also show that the type ��� quantifier of example (6.1) is neither ��� �� nor ��� ��-reducible.
Here is the example repeated for convenience.

(7.4) Every prosecutor charged the same suspects with the same crimes.

This is not ��� ��-reducible, for its ��� ��-reduct is equivalent to �� �� ���� Æ �� �� ����, since it holds
for every � � � and � �� that � 	 is in the quantifier relation, for � 	 expresses that
every � in � is related to every ��� &� pair in , so it is indeed the case that every � charges every �
with the same crimes, namely the crimes in �. Neither is it ��� ��-reducible, for its ��� ��-reduct is
equivalent to �� �� ���� Æ �� �� ����, since it holds for every � � � and � � � that 	 � is in
the quantifier relation, for	� expresses that every ��� �� pair in is related to every & in�, so if
���� �� and ���� �� both in then �� and �� charge � with the same crimes, namely all crimes in �.
This establishes the following fact about natural language:

FACT 7.1
Natural languages can express type ��� quantifiers that cannot be reduced to any composition of
lesser types.

The iterated ‘same’ construction can be used to generalize this fact.

(7.5) Every politician told the same lies to the same audiences on the same occasions.

(7.6) Every politician told the same variations on the same lies to the same audiences on the same
occasions.

Examples like these show:

FACT 7.2
For all reasonable �, natural languages present examples of type ��� quantificational expressions
that cannot be reduced to any composition of quantifiers of lesser degree.

Thanks to Ed Keenan for urging me to be explicit about these facts about natural language.

8 Related work

Keenan’s first examples of irreducible type ��� quantifiers are from [4]; the treatment of Section 4
is based on [5]. Van Benthem [2] gives a characterization of the reducible type ��� quantifiers that
satisfy (an appropriate version of) permutation: these are exactly the Boolean compounds of unary
quantifiers. Paper [5] has updates with further examples of irreducible quantifiers: [6, 7].

Ben-Shalom [1] remarks that Keenan’s methods do not allow to establish the reducibility of (8.1).

(8.1) Two students criticised themselves.

A Keenan-style argument would try to find a composition of two unary quantifiers that behave the
same on products, and conclude from the fact that this composition is not equivalent to the original
quantifier that the original quantifier is not reducible. As Ben-Shalom remarks, restricted to products,
(8.1) is equivalent to (8.2) rather than to (8.3).

98 Normal Forms for Characteristic Functions on �-ary Relations

(8.2) Two students criticized the same two students.

(8.3) Two students criticized two students.

Since (8.2) is not an example of a composition of two type ��� quantifiers, a Keenan style argument
does not get off the ground. Our argumentation for showing that (8.1) is irreducible remains intact,
however. The reduct of (8.1) is (8.3), and from the fact that (8.1) and (8.3) are different it follows
that (8.1) is irreducible.

Ben-Shalom, by the way, defines �%�-reducibility of a function � �� ��� as follows: � �� ��� is
�%�-reducible if there is a function � �� �� � %� and a positive � �� �%� with � � � Æ �. The ‘right-
hand-side bias’ in this definition is connected to the tree-based representation of �-ary relations that
is at the core of Ben-Shalom’s proof technique for irreducibility. This makes the definition less
natural than the one we adopted: it misses (e.g.) the distinction between ��� ��-reducibility and
���-reducibility (in our sense).

(8.4) The students answered the same questions on two exams.

(8.5) There were two exams where the students answered the same questions.

According to Ben-Shalom’s definition, the type ��� function in (8.4) is (BS) ���-reducible, for it
is a composition � Æ �� of the functionality quantifier � �� ��� and the quantifier �� �� ���. The
type ��� function in (8.5), however, is (BS) ���-reducible but not (BS) ���-reducible, for it can be
decomposed as �� Æ � .

Using our characterization of ���%� %�-reducibility of type ��� functions, we can establish a link
with Ben-Shalom’s graphical invariance theorem, as follows: if� �� ��� is ���%� %�-reducible, then
the � �� �%� given by

���� � � �� � � ����� �� 	 �� � �

satisfies the ‘replace tree’ and ‘delete tree’ properties.

Acknowledgements

Thanks to Paul Dekker, Chris Fox, Ed Keenan, Shalom Lappin, the participants of NASSLLI’04, the
participants of LUSH (Utrecht, November 2004) and two anonymous reviewers of this journal for
valuable comments and inspiring discussion.

References
[1] Dorit Ben-Shalom. A tree characterization of generalized quantifier reducibility. In M. Kanazawa and C.J. Pinón,

editors, Dynamics, Polarity and Quantification, number 48 in CSLI Lecture Notes, pages 147–171. CSLI, 1994.
[2] J. van Benthem. Polyadic quantifiers. Linguistics and Philosophy, 12(4):437–464, 1989.
[3] P. Dekker. Meanwhile, within the Frege boundary. Linguistics and Philosophy, 26:547–556, 2003.
[4] E. Keenan. Unreducible n-ary quantification in natural language. In P. Gärdenfors, editor, Generalized Quantifiers,

Linguistic and Logical Approaches, pages 109–150. Reidel, Dordrecht, 1987.
[5] E. Keenan. Beyond the Frege boundary. Linguistics and Philosophy, 15(2):199–221, 1992.
[6] E Keenan. Further beyond the Frege boundary. In J. van der Does and J. van Eijck, editors, Quantifiers, Logic, and

Language, number 54 in CSLI Lecture Notes, pages 179–201. CSLI Publications, Stanford, 1996.
[7] E. Keenan. Beyond the Frege boundary; II. �������������		
�����	���������	
���������������������,

1999.

Received 23 June 2004

