
Formal Specification with Alloy:
Specification of Algorithms

Jan van Eijck

jve@cwi.nl

Master SE, 6 October 2010

Overview

• Alloy utilities

• Assignments and pre- and postconditions in Alloy

• Alloy for automated logical reasoning

• Alloy specifications of algorithms

• On your to do list:

– Look through the example code in these slides,

– make sure you understand what is happening.

Alloy utilities

• Operations on graphs: util/graph.als

• Operations on integers: util/integer.als

• Operations on naturals: util/natural.als

• Linear ordering: util/ordering.als

Assignments in Alloy

module myexamples/assignment

open util/ordering[State] as so

open util/integer as integer

sig State {

// integer variable x

x: Int,

// integer variable y

y: Int

}

pred transition[s,s’: State] {

so/lt[s,s’] and s’.x = add[s.x,s.y] and s’.y = s.y

}

run transition for 2 State, 5 int

Pre- and Postconditions in Alloy

Example:

{x == n2 } x = x + 2 ∗ n + 1 {x == (n+1)2 }
{x == (n+1)2 } n = n + 1 {x == n2 }

Together:

{x == n2 } x = x + 2 ∗ n + 1;n = n + 1 {x == n2 }

State as an Ordered Domain

To represent this in Alloy, we have to represent state as an ordered

domain, and view the variables x and n as functional relations on state:

for every state, x and n yield integer values:

module myexamples/invar

open util/ordering[State] as so

open util/integer as integer

sig State {

// integer variable x

x: Int,

// integer variable n

n: Int

}

Incrementing and doubling:

fun inc [n : Int]: Int { add [n,Int[1]] }

fun double [n : Int]: Int { add [n,n] }

Initializing the first state by setting both x and n equal to 0:

pred init {

let fs = so/first | { fs.x = Int[0] and fs.n = Int[0] }

}

State change is the result of doing assignments to x and y.

But Alloy is a declarative system, so instead of ‘doing’ the assigments,

we describe the relation between the pre- and post-states.

pred extend [pre, post: State] {

some X,N: Int | pre.x = X

and pre.n = N

and post.x = inc[add[X,double[N]]]

and post.n = inc[N]

}

Creating the state space:

fact createStates {

init

all s: State - so/last |

let s’ = so/next[s] | extend[s,s’]

}

run {} for exactly 5 State, 6 int

so/Ord

State0

first

State4

lastnext [State3]

State1

next [State0]

State2

next [State1]

State3

next [State2]

0

x n

4

n

16

x

1

x n

2

nx

3

n

9

x

How to draw logical conclusions from a list of givens

Here is a story. Someone invites six people A,B,C,D,E, F to at-

tend a conference. The email exchanges that follow yield the following

information:

1. At least one of A,B will attend.

2. From the set {A,E, F} exactly two will attend.

3. Either both B and C will attend or neither of them will.

4. One of A and D will attend, the other will not.

5. Same for C and D.

6. If D does not attend, then neither will E.

Use an Alloy specification to figure out who will attend the conference.

Solution

abstract sig Person {}

one sig A,B,C,D,E,F extends Person {}

sig Congress in Person {}

fact{

some (A + B) & Congress

#((A+E+F) & Congress) = 2

B in Congress iff C in Congress

A in Congress iff not D in Congress

C in Congress iff not D in Congress

not D in Congress => not E in Congress

}

run {}

Result

A
(Congress)

B
(Congress)

C
(Congress) D E F

(Congress)

Spanning Tree of a Graph

Let a graph G be given. Assume G is symmetric and connected. A

spanning tree of G is a tree structure with the same node set as G,

and with every parent pointer along an edge of G.

Algorithm for finding a spanning tree:

• Start with an arbitrary root node, and put it in the set of tree

nodes.

• As long as there are nodes not in the set of tree nodes, proceed as

follows:

– Pick a pair of graph nodes (x, y) such that (i) x is in the set

of tree nodes, (ii) y is outside the set of tree nodes, and (iii)

there is an edge from x to y in the graph.

– put the parent link y 7→ x in the tree.

Specifying the Algorithm

To arrive at an Alloy specification, we need to represent the graph, and

the sequence of execution states of the algorithm. We assume a linear

ordering of execution states.

module myexamples/st

open util/graph[Node] as graph

open util/ordering[State] as so

We assume an arbitrary root. The graph should be undirected (sym-

metric) and connected. For convenience, we also assume that there are

no self-loops:

sig Node { e: set Node }

one sig Root extends Node {}

fact niceGraph {

noSelfLoops[e]

undirected[e] // edge relation is symmetric

stronglyConnected[e] // no lose parts

}

Recall the definitions

// graph in undirected

pred undirected [r: node->node] {

symmetric[r]

}

// graph has no self-loops

pred noSelfLoops[r: node->node] {

irreflexive[r]

}

// graph is weakly connected

pred weaklyConnected[r: node->node] {

all n1, n2: node | n1 in n2.*(r + ~r)

}

// graph is strongly connected

pred stronglyConnected[r: node->node] {

all n1, n2: node | n1 in n2.*r

}

Question

Suppose we replace

stronglyConnected[e]

by

weaklyConnected[e].

Would that make a difference? Why (not)?

Representing State

In each state, there is a current set of tree nodes, and a current set of

parent pointer links:

sig State {

// set of tree nodes in current state

tree: set Node,

// parent pointers in current state

parent: Node -> lone Node

}

Initialisation, Tree Extension

pred init {

let fs = so/first | { fs.tree = Root and no fs.parent }

}

pred extend [pre, post: State] {

some x,y: Node | x in pre.tree

and y !in pre.tree

and y in x.e

and post.tree = pre.tree + y

and post.parent = pre.parent + y->x

}

Tree Creation

fact createTree {

init

all s: State - so/last |

let s’ = so/next[s] | extend[s,s’]

}

run {} for exactly 4 Node, 4 State

Example Run

Node0

Node2

e

Root

e

Node1

e

e

so/Ord

State0

first

State3

lastnext [State2]

State1

next [State0]

State2

next [State1]

tree

tree

parent [Node0] tree

parent [Node2] tree

parent [Node1]tree

tree

tree parent [Node1]

tree

parent [Node2]tree

parent [Node1] tree

Checking the Algorithm

Check that the structure found at the last state is indeed a tree over

all nodes of the graph.

Note that in the graph utility, trees are defined with the arrows pointing

towards the leaves. So we have to check for the converse of the parent

relation.

assert STfound {

so/last.tree = Node

treeRootedAt[~(so/last.parent),Root]

}

check STfound for exactly 4 Node, 4 State

Result

Executing "Check STfound for exactly 4 Node, 4 State"

Solver=minisat Bitwidth=4 Symmetry=ON

797 vars. 96 primary vars. 2583 clauses. 75ms.

No counterexample found. Assertion may be valid. 34ms.

Problem of Finding Minimum Spanning Tree

• A weighted graph is a graph with weights assigned to the edges.

Think of the weight as an indication of distance.

• Let G be a weighted, symmetric and connected graph. Assume

there are no self-loops. (Or, if there are self-loops, make sure their

weight is set to 0.)

• A minimum spanning tree for weighted graph G is a spanning tree

of G whose edges sum to minimum weight.

• Caution: minimum spanning trees are not unique.

• Applications: finding the least amount of wire necessary to connect

a group of workstations (or homes, or cities, or . . .).

Minimum Spanning Tree: Prim’s Algorithm

Finds a minimum spanning tree for an arbitrary weighted symmetric

and connected graph. See Prim [1957], [Skiena, 1998, 4.7].

• Select an arbitrary graph node r to start the tree from.

• While there are still nodes not in the tree

– Select an edge of minimum weight between a tree and non-tree

node.

– Add the selected edge and vertex to the tree.

It is not at first sight obvious that Prim’s algoritm always results in a

minimum spanning tree, but this fact can be checked by means of an

Alloy specification.

Alloy Specification of Prim’s Algorithm

Start as before, only now the graphs have weighted edges:

module myexamples/mst

open util/graph[Node] as graph

open util/ordering[State] as so

open util/ordering[W] as wo

// graphs with weighted edges

sig Node { w: Node -> lone W }

one sig Root extends Node {}

sig W {} // weights

fact wSymm { all x,y: Node | w[x,y] = w[y,x] }

fact wDiv { some x,y: Node | w[x,y]= wo/last }

Alloy Specification of Prim’s Algorithm (ctd)

//define edge in terms of weighted edges

fun edge: Node -> set Node {

{ x,y: Node | some w[x,y] }

}

fact niceGraph {

noSelfLoops[edge]

undirected[edge] // edge relation is symmetric

stronglyConnected[edge] // no lose parts

}

Alloy Specification of Prim’s Algorithm (ctd)

States and initialisation as before:

sig State {

// set of tree nodes in current state

tree: set Node,

// parent pointers in current state

parent: Node -> lone Node

}

pred init {

let fs = so/first | { fs.tree = Root and no fs.parent }

}

Alloy Specification of Prim’s Algorithm (ctd)

Extension now looks for the edge with minimum weight:

pred extend [pre, post: State] {

some x,y: Node | x in pre.tree

and y !in pre.tree

and y in x.edge

and all y’:Node | {

y’ in x.edge => lte[w[x,y],w[x,y’]]

}

and post.tree = pre.tree + y

and post.parent = pre.parent + y->x

}

Alloy Specification of Prim’s Algorithm (ctd)

Rest as before:

fact createTree {

init

all s: State - so/last |

let s’ = so/next[s] | extend[s,s’]

}

run {} for exactly 4 Node, 4 State, 3 W

Example Run

Node0

Root

($x)

$edge

W 1

w [Root]

W 2

w [Node2]w [Node0]w [Node1]

Node1

$edge
Node2

($y)

$edge

w [Node2]w [Root] $edge

w [Root]w [Node1]

so/Ord

State0

first

State3

next [State2]last

State1

next [State0]

State2

next [State1]

tree

w o/Ord

W 0

first

next [W 1] lastnext [W 0]

tree

parent [Node0] parent [Node1] tree

parent [Node2]tree

tree

parent [Node1]tree

tree

parent [Node1]tree

parent [Node2] tree

tree

A Check

assert STfound {

so/last.tree = Node

treeRootedAt[~(so/last.parent),Root]

}

check STfound for exactly 4 Node, 4 State, 3 W expect 0

This check succeeds. The checks establishes that the result of the

algorithm is a spanning tree (within the specified Alloy scope).

Still to be checked: . . .

• We have not checked yet that the resulting tree is a minimum

spanning tree.

• Checking this is part of your homework for this week.

• Of course, the check might reveal that there is still something

wrong with the specification!

References

R.C. Prim. Shortest connection networks and some generalizations. Bell

System Technical Journal, 36:1389–1401, 1957.

Steven S. Skiena. The Algorithm Design Manual. Springer Verlag, New

York, 1998. Second Printing.

