
Limits and Strengths of Predicate Logic
(and its Alloy Implementation)

Jan van Eijck

jve@cwi.nl

Master SE, 22 September 2010

Some New Billboards

There are some questions
that can’t be answered by logic

There are some questions
that can’t be answered
by computing machines

Automating First Order Relational Logic

• Relational logic = First Order Logic plus Relational Operators.

• Most relational operations are expressible in first order logic, but

not all of them.

• Relation composition and relation transpose can be expressed in

first order logic:

• r.s can be expressed as {(x, y) | ∃zR(x, z) ∧ S(z, y)}.

• In Alloy:

x->y in r.s iff some z | x->z in r and z->y in s

• ~R can be expressed as {(x, y) | R(y, x)}.

• In Alloy:
x->y in ~r iff y->x in r

Beyond First Order Logic: Transitive Closure

• Transitive closure and reflexive transitive closure cannot be ex-

pressed in first order logic.

• The transitive closure of R is the smallest relation S for which:

– R ⊆ S,

– S is transitive.

• To express ^r one would need an ‘infinite formula’:

{(x, y) | R(x, y) ∨ ∃z(R(x, z) ∧R(z, y))

∨∃z, v(R(x, z) ∧R(z, v) ∧R(v, y))

∨∃z, v, w(R(x, z) ∧R(z, v) ∧R(v, w) ∧R(w, y))

∨ · · · }

Propositional Logic

• Propositional logic: logic of propositions.

• Example formulas:

– p,

– p ∨ q,

– p→ p ∨ q,

– p ∨ q ⇔ ¬(¬p ∧ ¬q).

• Why is propositional logic decidable and first order logic undecid-

able?

• Let us first see how first order logic is different from propositional

logic.

SAT

• The following questions about propositional formulas are equiva-

lent:

– F1 implies F2,

– F1 → F2 is true for every valuation.

– F1 ∧ ¬F2 is not satisfiable.

• The satisfiability problem for propositional logic is called SAT.

Decidability of Propositional Logic

• SAT is decidable

• Decision algorithm to check SAT of F :

Any propositional formula mentions only a finite number of propo-

sition letters. Say the proposition letters mentioned in F are

p1, . . . , pn.

There are 2n possible valuations for these letters.

Just work out the truth value of F for each valuation (using the

truth table method) to see if one of them is satisfiable.

If this is the case, answer ‘yes’, otherwise answer ‘no’.

The Truth Table Method

For instance, look at the formula

¬p ∧ ((p→ q)⇔ ¬(q ∧ ¬p)).

Suppose p has value 1 and q has value 0, then we get (using the truth

tables):

• ¬p has 0,

• p→ q has 0,

• q ∧ ¬p has 0;

• ¬(q ∧ ¬p) has 1;

• (p→ q)⇔ ¬(q ∧ ¬p) has 0,

• the whole expression has 0.

¬ p ∧ ((p → q) ⇔ ¬ (q ∧ ¬ p))
... 1 ... 1 ... 0 0 1

0 ... 0 0
... 0
... ... 1
... 0

0

In compressed form:

¬ p ∧ ((p → q) ⇔ ¬ (p ∧ ¬ p))

0 1 0 1 0 0 0 1 0 0 0 1

The method given above (the truth table method) can also be used

as a decision algorithm for propositional consequence.

Assignment for this week: implement propositional equivalence check-

ing in Haskell. (Needed for automated testing of conversion routines

that are supposed to preserve logical equivalence.)

First Order Logic

• Now look at the case of first order logic.

• A truth table method does not work here.

• Instead of valuations we need models.

• A model has a domain, and interpretations for all predicates and

relations.

• Look at ∀x, y, z(Rxy ∧Ryz → Rxz)

• Alloy version:

all x,y,z: Entity |

x->y in r and y->z in r implies x->z in r

A model for this has a domain and a transitive relation on that

domain. Let’s try this out in Alloy . . .

Alloy Example

module myexamples/rel_t

abstract sig Entity { r: set Entity }

one sig A, B, C, D extends Entity {}

fact r_transitive {

all x,y,z: Entity |

x->y in r and y->z in r implies x->z in r }

pred show () {}

run show

Formulas and Models

• Consider the above Alloy specification.

• The result of executing run show for this specification is a model

with a transitive relation r on it.

• Think of the Alloy specification as a formula.

• Think of the picture that results from executing run show as a

model for that formula.

Another Way to Express Transitivity

module myexamples/rel_tt

abstract sig Entity { r: set Entity }

one sig A, B, C, D extends Entity {}

fact r_transitive {

all x,y,z: Entity |

x->y in r and y->z in r implies x->z in r }

assert r_transitive’ { r.r in r }

check r_transitive’

pred show () {}

run show

Formulas with Only Infinite Models

• Consider the conjunction of:

– ∀x∀y(Rxy → ¬Ryx) (R is asymmetric)

– ∀x∃yRxy (R is serial)

– ∀x∀y∀z((Rxy ∧Ryz)→ Rxz) (R is transitive).

• Suppose our domain is non-empty.

• Then every model of this conjunction is infinite. Why?

• The task of checking all relational structures (including infinite

ones) in search for a model of a formula cannot be finished in a

finite amount of time.

Consistency, Refutation of Consistency

• A first order formula is consistent if it has a model.

• The existence for formulas with only infinite models suggests that

first order consistency is not decidable.

• In fact, we have a semi-decision method: if a formula is inconsis-

tent the method will determine this after finitely many steps.

• The method consists of constructing a so-called semantic tableau.

This boils down to a systematic search for an inconsistency.

• There are consistent formulas for which the method loops. The

refutation method for consistency is not an algorithm.

• Note that nothing we have said above is a proof that a decision

method for first order consistency cannot exist.

Undecidable Queries

• The deep reason behind the undecidability of first order logic is

the fact that its expressive power is so great that it is possible to

state undecidable queries.

• One of the famous undecidable queries is the halting problem.

• Here is what a halting algorithm would look like:

– Input: a specification of a computational procedure P , and

an input I for that procedure

– Output: an answer ‘halt’ if P halts when applied to I , and

‘loop’ otherwise.

Undecidability of the Halting Problem

• Suppose there is an algorithm to solve the halting problem. Call

this H .

• Then H takes a computational procedure P as input, together

with an input I to that procedure, and decides. Note that H is

itself a procedure; H takes two inputs, P and I .

• Let S be the procedure that is like H , except that it takes one

input P , and then calls H(P, P).

• Consider the following new procedure N for processing inputs P :

If S(P) says “halt”, then loop,

and if S(P) says “loop”, then print “halt” and terminate.

Undecidability of the Halting Problem (ctd)

• What does N do when applied to N itself? In other words, what

is the result of executing N(N)?

• Suppose N halts on input N . Then H should answer ‘halt’ when

H is applied to N with input N , for H is supposed to be a correct

halting algorithm. But then, by construction of the procedure, N

loops. Contradiction.

• Suppose N loops on input N . Then H should answer ‘loop’ when

H is applied to N with input N , for H is supposed to be a correct

halting algorithm. But then, by construction of the procedure, N

prints ‘halt’ and stops. Contradiction.

• We have a contradiction in both cases. Therefore a halting algo-

rithm H cannot exist.

In Pictures . . .

Alan Turing’s Insight

A language that allows the specification of ‘universal procedures’ such

as H , S and N cannot be decidable.

But first order predicate logic is such a language . . .

Proof of Undecidability of First Order Logic

• The formal proof of the undecidability of first order logic consists

of

– A very general definition of computational procedures.

– A demonstration of the fact that such computational proce-

dures can be expressed in first order logic.

– A demonstration of the fact that the halting problem for com-

putational procedures is undecidable (see the above sketch).

– A formulation of the halting problem in first order logic.

• This formal proof was provided by Alan Turing in ?. The compu-

tational procedures he defined for this purpose were later called

Turing machines.

Turing Machines in Haskell

module Turing where

data State = Q | R | S | T | U | V | Stop

deriving (Eq,Show)

data Symbol = Zero | One | Blank deriving Eq

instance Show Symbol where

show Zero = "0"

show One = "1"

show Blank = "*"

data Move = Lft State Symbol | Rght State Symbol | Halt

deriving (Eq,Show)

type Tape = [Symbol]

type Instr = State -> Symbol -> Move

type Turing = (Tape,Int,State,Instr)

writeTape tape pos symbol =

take pos tape ++ [symbol] ++ drop (pos+1) tape

step :: Turing -> Turing

step (tape,h,state,f) =

case

f state (tape !! h) of

Rght new symbol ->

(writeTape tape h symbol,h+1,new,f)

Lft new symbol ->

if h >= 0 then (writeTape tape h symbol,h-1,new,f)

else (writeTape tape h symbol,h,new,f)

Halt -> (tape,h,Stop,f)

compute :: Turing -> [(Tape,Int,State)]

compute (tape,h,Stop,f) = []

compute t@(tape,h,state,f) =

(tape,h,state) : (compute . step) t

run :: Turing -> IO()

run turing = sequence_ (map print (compute turing))

Example Machines

module TuringExamples where

import Turing

turing1 :: Turing

turing1 =

([Blank,Blank, Zero,One,Zero,One,Blank,Blank],0,Q,f)

where f Q Blank = Rght Q Blank

f Q Zero = Rght R One

f Q One = Rght R Zero

f R Blank = Lft S Blank

f R Zero = Rght R One

f R One = Rght R Zero

f S Zero = Lft S Zero
f S One = Lft S One

f _ _ = Halt

turing2 :: Turing

turing2 = ([Blank,Zero,One,Zero,Zero,Blank],0,Q,f)

where f Q Blank = Rght Q Blank

f Q Zero = Rght Q Zero

f Q One = Rght R One

f R Zero = Lft S One

f R One = Rght R One

f S Blank = Rght T Blank

f S Zero = Rght T Zero

f S One = Lft S One

f T Zero = Rght Q Zero

f T One = Rght Q Zero

f _ _ = Halt

turing2’ :: Turing

turing2’ =

([Blank,Zero,One,Zero,One,Zero,Zero,One,Blank],0,Q,f)

where f Q Blank = Rght Q Blank

f Q Zero = Rght Q Zero

f Q One = Rght R One

f R Zero = Lft S One

f R One = Rght R One

f S Blank = Rght T Blank

f S Zero = Rght T Zero

f S One = Lft S One

f T Zero = Rght Q Zero

f T One = Rght Q Zero

f _ _ = Halt

Example Run

TuringExamples> run turing1

([*,*,0,1,0,1,*,*],0,Q)

([*,*,0,1,0,1,*,*],1,Q)

([*,*,0,1,0,1,*,*],2,Q)

([*,*,1,1,0,1,*,*],3,R)

([*,*,1,0,0,1,*,*],4,R)

([*,*,1,0,1,1,*,*],5,R)

([*,*,1,0,1,0,*,*],6,R)

([*,*,1,0,1,0,*,*],5,S)

([*,*,1,0,1,0,*,*],4,S)

([*,*,1,0,1,0,*,*],3,S)

([*,*,1,0,1,0,*,*],2,S)

([*,*,1,0,1,0,*,*],1,S)

Back to Alloy

• Alloy is not a decision method for first order logic

• Alloy translates first order logic with (small) finite scopes into

propositional logic.

• Consistency of these translations can be decided, for propositional

logic is decidable.

• SAT is intractable.

• More precisely, if one adds a single proposition letter, the compu-

tation time used by the truth table method doubles (for the truth

tables become twice as big).

• This means that the truth table method is an exponential algo-

rithm.

• It is very likely that all other methods for solving SAT are expo-

nential, for SAT is NP-hard.

Sat and P=NP

• If we can solve SAT in polynomial time, we have solved the P =

NP problem.

• P = NP is widely believed to be false, although nobody has been

able to give a proof of this.

• What this means it that we should not expect the Alloy method

to scale up.

• All future versions of Alloy will still only work for small domains.

• For a domain of size k, the result of adding an extra binary relation

R to the signature is that 2k2
possibilities for the interpretation

of R have to be investigated.

Steps of the Alloy Analysis

1. Conversion to negation normal form and skolemization.

2. Translation (for a chosen scope) to a formula of propositional logic

(a Boolean formula). Mapping between relational variables and

Boolean variables is preserved.

3. Conversion of Boolean formula to conjunctive normal form.

4. CNF of Boolean formula fed to SAT solver.

5. If SAT solver finds a model, a first order version of this is con-

structed using the mapping from 2.

Checking Relational Properties with Alloy

• Asymmetry of a relation: ∀x∀y(Rxy → ¬Ryx).

• Irreflexivity of a relation: ∀x¬Rxx.

• Every asymmetric relation is irreflexive.

module myexamples/rel_asym

abstract sig Entity { r : set Entity }

one sig A, B, C, D extends Entity {}

fact r_asymmetric { no ~r & r }

assert r_irreflexive { no iden & r }

check r_irreflexive

pred show () { }

run show

Checking Relational Properties (ctd)

Do transitivity and symmetry together imply reflexivity?

module myexamples/rel_ts

abstract sig Entity { r : set Entity }

one sig A, B, C, D extends Entity {}

fact r_transitive { r.r in r }

fact r_symmetric { ~r in r }

pred show () { }

run show

assert r_reflexive { iden in r }

check r_reflexive

Checking Relational Properties (ctd)

Do transitivity, symmetry and seriality together imply reflexivity?

module myexamples/rel_tss

abstract sig Entity { r : set Entity }

one sig A, B, C, D extends Entity {}

fact r_transitive { r.r in r }

fact r_symmetric { ~r in r }

fact r_serial

{ all x: Entity | some y: Entity | x->y in r }

pred show () { }

run show

assert r_reflexive { iden in r }
check r_reflexive

Oops, Unexpected Alloy Behaviour

We get: counterexample found. Assertion is invalid.

This is strange, for the assertion is valid. If we check inspect coun-

terexample, then we see what is in fact a reflexive relation. Very

strange.

Debugging Alloy

Let’s try a variation on the program:

module myexamples/rel_tss

abstract sig Entity { r : set Entity }

one sig A, B, C, D extends Entity {}

pred r_trans { r.r in r }

pred r_symm { ~r in r }

pred r_serial { all x: Entity | some y: Entity | x->y in r }

pred r_refl { iden in r }

TSSimpliesR: check {

r_trans and r_symm and r_serial => r_refl
}

Again, we get a report of a counterexample.

Again, if we inspect the ‘counterexample’, it turns out to be an ex-

ample of a reflexive relation.

Debugging Alloy (ctd)

Let us do a further check. Select ‘show’ and open the Evaluator.

We get:

Eval> r

{A$0->A$0, A$0->C$0, B$0->B$0, C$0->A$0, C$0->C$0,

D$0->D$0}

This is our example of a reflexive relation. Let us check the iden

relation:

Eval> iden

{-8->-8, -7->-7, -6->-6, -5->-5, -4->-4, -3->-3,

-2->-2, -1->-1, 0->0, 1->1, 2->2, 3->3, 4->4,
5->5, 6->6, 7->7, A$0->A$0, B$0->B$0, C$0->C$0,

D$0->D$0}

Oops, the identity is taken over a larger universe. Now it is no surprise

that iden in r fails:

Eval> iden - r

{-8->-8, -7->-7, -6->-6, -5->-5, -4->-4, -3->-3,

-2->-2, -1->-1, 0->0, 1->1, 2->2, 3->3, 4->4,

5->5, 6->6, 7->7}

Debugging Alloy (end)

OK, so the bug was in our definition of reflexivity. Now that we see

this we can solve the problem:

module myexamples/rel_tss

abstract sig Entity { r : set Entity }

one sig A, B, C, D extends Entity {}

pred r_trans { r.r in r }

pred r_symm { ~r in r }

pred r_serial { all x: Entity | some y: Entity | x->y in r }

pred r_refl { iden in r }

pred r_refl’ { all x: Entity | x -> x in r }

TSSimpliesR: check {

r_trans and r_symm and r_serial => r_refl

}

TSSimpliesR’: check {

r_trans and r_symm and r_serial => r_refl’

}

If There is Time: Induction and Recursion

