Composing Models

Jan van Eijck, Floor Sietsma, Yanjing Wang

LOFT 2010, 7 July 2010

Abstract

- We study a new composition operation on (epistemic) multiagent models and update actions that takes vocabulary extensions into account.
- This operation allows to represent partial observational information about a large model in a small model, where the small models can be viewed as representations of the observational power of agents, and about their powers for changing the facts of the world.
- Our investigation provides ways to check relevant epistemic properties on small components of large models, and our approach generalizes the use of 'locally generated models'.

Overview: Three Simple Messages

- Models can be made small by vocabulary restriction
- Composing restricted models is easy
- Compositions of restricted models are useful

Note: an expanded version of this LOFT paper can be found in Chapter 5 of the PhD Thesis of Yanjing Wang, Epistemic Modelling and Protocol Dynamics, to be defended in September 2010 (available upon request from the author). Multi-agent Models with Different Vocabularies

Fix a set of proposition letters P. Call a subset of P a vocabulary.

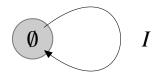
Consider multi-agent models with vocabularies Q taken from P.

Call such models restricted models.

This allows us to refine 'knowledge about the world' to 'knowledge about Q'.

Knowing Nothing About Anything

The restricted model \mathcal{E} for knowing nothing about anything:

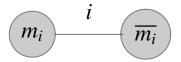


Formally, $(\{e\}, I, \{\{(e, e)\} \mid i \in I\}, e \mapsto \emptyset, \emptyset)$.

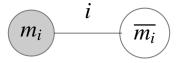
Compare: the non-restricted model for knowing nothing about anything, for a language over *P* with |P| = n has 2^n worlds.

Restricted Models for Muddy Children

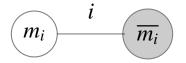
Single child not knowing whether it is muddy. Voc restricted to m_i :



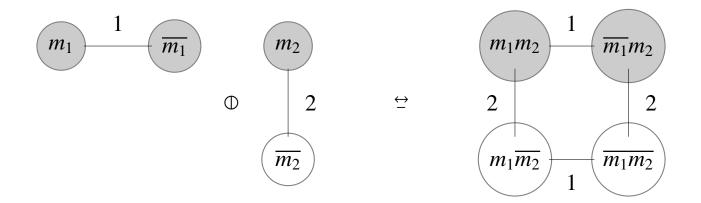
Single muddy child not knowing whether it is muddy:



Single clean child not knowing whether it is muddy:



Restricted Model Composition: Example



Restricted Model Composition: Definition

Restricted model composition is a product construction.

The composition $\mathcal{M} \oplus \mathcal{N}$ of two restricted multi-agent models with the same agent set *I* is given by $(W, I, R, V, Q_M \cup Q_N)$, where the new set of worlds is given by:

$$W = \{(w, v) \mid w \in W_M, v \in W_N, V_M(w) \cap Q_N = V_N(v) \cap Q_M\},\$$

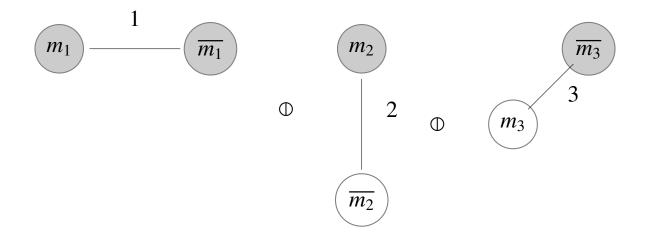
the new accessibility relations are defined as the product of the relations on the components, in the usual product way:

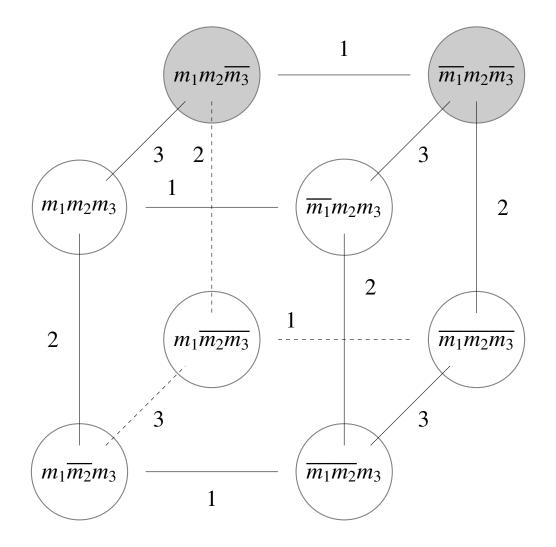
 $(w, v)R_i(w', v')$ iff $wR_{iM}w'$ and $vR_{iN}v'$,

and V(w, v) agrees with $V_M(w)$ on Q_M and with $V_N(v)$ on Q_N :

 $V(w, v) = V_M(w) \cup V_N(v).$

Composing the Model for Three Muddy Children





Structural Properties of O

 \Leftrightarrow is a congruence for \oplus :

If $\mathcal{M}_1 \cong \mathcal{M}_2$ and $\mathcal{N}_1 \cong \mathcal{N}_2$ then $\mathcal{M}_1 \oplus \mathcal{N}_1 \cong \mathcal{M}_2 \oplus \mathcal{N}_2$.

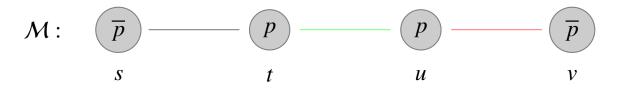
Multi-agent models form a commutative monoid under \oplus :

This yields the well-known preordering \leq :

 $\mathcal{M} \leq \mathcal{N}$ iff there is a \mathcal{K} with $\mathcal{M} \oplus \mathcal{K} \cong \mathcal{N}$.

⊕ is not idempotent

There are \mathcal{M} with the property that $\mathcal{M} \oplus \mathcal{M} \not\cong \mathcal{M}$. Example:



(t, u) is a *p*-world in $\mathcal{M} \oplus \mathcal{M}$, but (t, u) cannot reach a \overline{p} world in $\mathcal{M} \oplus \mathcal{M}$.

Left-Simulation

A left-simulation between \mathcal{M} and \mathcal{N} is like a bisimulation, but with the **invariance** condition restricted to the vocabulary of \mathcal{M} , and with the **zig** condition omitted.

Formally, a left-simulation between \mathcal{M} and \mathcal{N} is a relation $C \subseteq W_M \times W_N$ such that wCv implies that the following hold:

Restricted invariance $p \in V_M(w)$ iff $p \in V_N(v)$ for all $p \in Q_M$,

Zag If for some $i \in I$ there is a $v' \in W_N$ with $v \xrightarrow{i} v'$ then there is a $w' \in W_M$ with $w \xrightarrow{i} w'$ and w'Cv'.

 $\mathcal{M}, w \subseteq \mathcal{N}, v$: there is a left-simulation that connects w and v. $\mathcal{M} \subseteq \mathcal{N}$: there is a total left-simulation between \mathcal{M} and \mathcal{N}

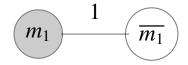
Theorem 1 If $\mathcal{M} \leq \mathcal{N}$ then $\mathcal{M} \subseteq \mathcal{N}$.

 \mathcal{M} is propositionally differentiated if it holds for all worlds w, w' of \mathcal{M} that if w and w' have the same valuation then $w \cong w'$.

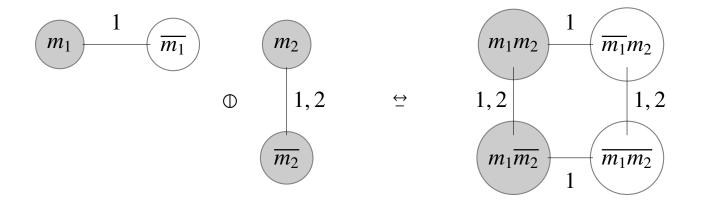
In other words, if $w \not\simeq w'$ then this difference shows up as a difference in the valuations of w and w'.

Theorem 2 If \mathcal{M} is propositionally differentiated, then $\mathcal{M} \leftarrow \mathcal{N}$ implies $\mathcal{M} \leq \mathcal{N}$.

The full paper has an example showing that the theorem may fail for models that are not propositionally differentiated. **Expansion to Larger Vocabulary**



Expansion of this model to m_1, m_2 :



Vocabulary Expansion, Formally

Let Q^I be the universal ignorance model for Q, i.e. $Q^I = (W, I, R, V, Q)$ with $W = \mathcal{P}(Q)$, $R_i = W^2$, V = id.

If $\mathcal{M} = (W, I, R, V, Q)$ is a restricted static model and Q_1 is a set of proposition letters, then we define the expanded model for the larger vocabulary $Q \cup Q_1$ as follows:

 $\mathcal{M} \triangleleft Q_1 = \mathcal{M} \oplus Q_1^{I}.$

Theorem 3 (Preservation) If a pointed model (\mathcal{M}, s) is decomposable into models

$$(\mathcal{M}_0, s_0), \ldots, (\mathcal{M}_n, s_n)$$

with disjoint vocabularies

$$Q_0, Q_1, \ldots, Q_n,$$

then for any i:

$$\mathcal{M}_i, s_i \stackrel{\leftrightarrow}{=}_{Q_i} \mathcal{M}, s.$$

Therefore for any ϕ in $PDL_{Q_i,Ag}$:

$$\mathcal{M}_i, s_i \models \phi \iff \mathcal{M}, s \models \phi.$$

This means that any properties of the large model that can be stated in a local vocabulary can be checked locally.

Locally Generated Models

We say \mathcal{M} is *locally generated* if, for every agent *i*, there is a set of boolean formulas Φ_i (the set of local observables) based on $Q_{\mathcal{M}}$ such that for all $w, w' \in W_M$:

$$w \sim_i w'$$
 iff for all $\varphi \in \Phi_i$, $\mathcal{M} \models_w \varphi \Leftrightarrow \mathcal{M} \models_{w'} \varphi$

Intuitively, a model is locally generated if the local observables of the agents determine the epistemic relations in the model.

Example: the *n*-Muddy Children model is locally generated by set of observables Φ_1, \ldots, Φ_n , where

$$\Phi_i = \{m_j \mid j \in I, j \neq i\}.$$

Theorem 4 (Decomposition by agents) Let a set of agents

$$Ag = \{1, 2, ..., n\}$$

be given.

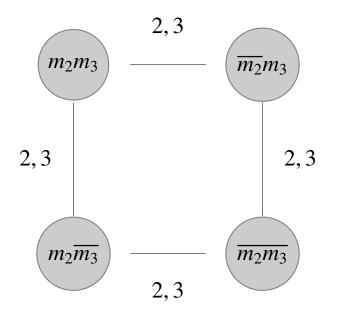
If $\mathcal{M} = (W, Q, Ag, \sim, V)$ is locally generated by Φ_1, \ldots, Φ_n , then there are models $\mathcal{M}_1, \ldots, \mathcal{M}_n$ and \mathcal{M}_0 such that:

- $\mathcal{M} \cong (\mathcal{M}_0 \oplus \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_n);$
- $|W_{\mathcal{M}_i}| \leq |W|$ and \mathcal{M}_i is a bisimulation contracted model;
- $Q_{\mathcal{M}_j} = \{p \in Q_{\mathcal{M}} \mid p \text{ appears in } \Phi_j\} \text{ for } j > 0.$

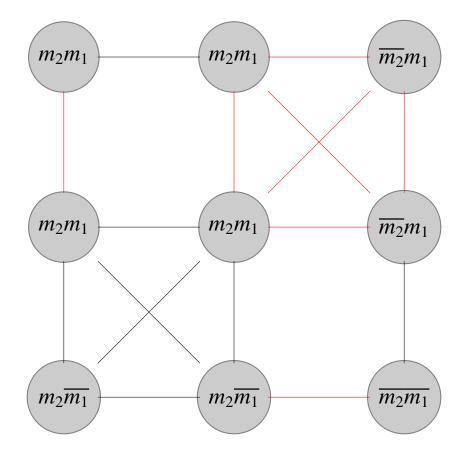
Another possible decomposition of locally generated models is **by issues**. Example: Our earlier Muddy Children decomposition. See Yanjing's thesis. Decomposition by agents of the 3-Muddy Children model, for first agent:

$$\Phi_1 = \{m_2, m_3\}.$$

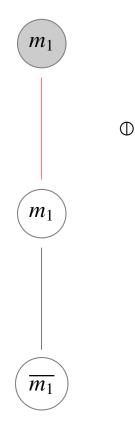
The model \mathcal{M}_1 looks like this:

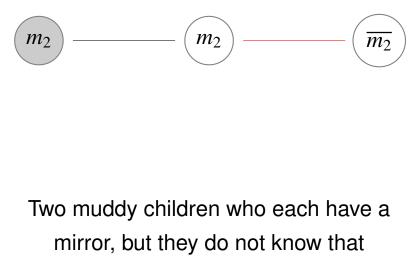


Not locally generated, but decomposable:



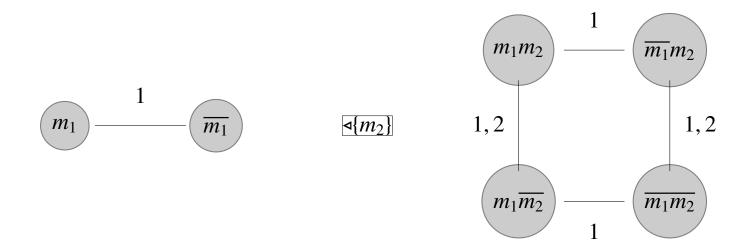
Decomposition:

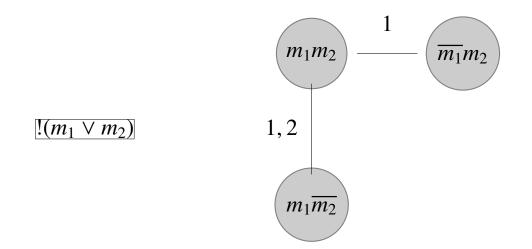




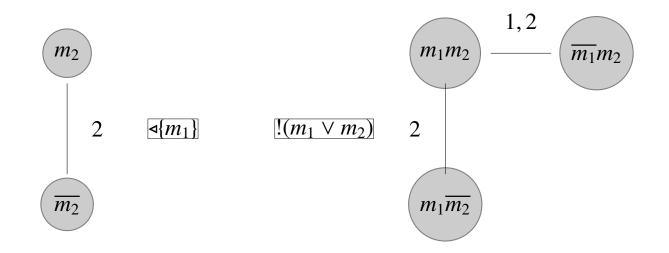
of each other.

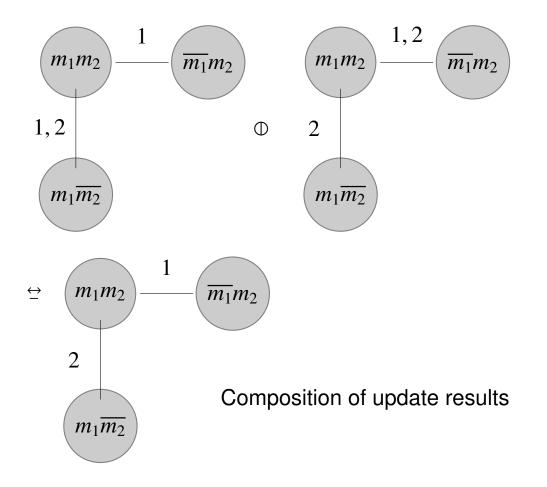
Update with Vocabulary Expansion: Public Announcement





Update of Other Component





Interaction of \oplus and \otimes

Theorem 5 If A is propositionally differentiated then:

 $(\mathcal{M} \oplus \mathcal{N}) \otimes A \cong (\mathcal{M} \otimes A) \oplus (\mathcal{N} \otimes A).$

And without conditions on the action models, with the appropriate notion of \oplus for action models:

Theorem 6 $\mathcal{M} \otimes (A \oplus B) \cong (\mathcal{M} \otimes A) \oplus (\mathcal{M} \otimes B).$

Further Work

- Extend DEMO with \oplus , in order to allow epistemic model checking of large models on local components.
- Characterize models in terms of their composition. (Example: what do models that are composed from only two-world components look like? Answered in the full paper.)
- Study the combination of communicative actions and vocabulary expansion. Example task: axiomatize the strong Kleene logic of public announcement !φ and vocabulary expansion #p, where #p is interpreted as the model changing operation M → M ⊲ {p}.
- Work out obvious connections with awareness logics, and with work on the dynamics of awareness.