
Mind the Gap
Jan van Eijck

CKI-presentatiedag, 21 Juni, 2002



Abstract

• Intelligent Tasks: Finding the Next Term of a Sequence

• Difference Analysis of Polynomial Sequences

• Charles Babbage’s Difference Engine

• Finding the Form of the Sequence.

• Gaussian Elimination.

• Example Application: the Pie Cutting Sequence

• What has this to do with Intelligence?

• What has it all to do with Consciousness (if anything)?



module MGT

where



Intelligence

Asking whether computers can think is like
asking whether submarines can swim.

Edsger W. Dijkstra

Computers are intelligent to the extent that
they are able to carry out intelligent tasks.

Idea behind Turing Test



Intelligent Tasks: Finding the Next Term of a Sequence

Guess the next number:

0

1

4

9

16

· · ·
n2



Guess the next number:

0

2

6

12

20

· · ·
n2 + n



Guess the next number:

1

2

9

28

65

· · ·
n3 + 1



Guess the next number:

0

1

3

6

10

15

· · ·
1
2n

2 + 1
2n =

n(n+1)
2



Guess the next number:

3

7

17

39

79

· · ·
n3 + 3n + 3



Analysing Sequences by Difference Analysis

Suppose a0, a1, a2, a3, a4, . . . is an infinite sequence
of natural numbers.

Then f = λn.an is a function in N → N.

The function f is a polynomial function of degree
k if f can be presented in the form

ckn
k + ck−1n

k−1 + · · · + c1n + c0,

with ci ∈ Q and ck 6= 0.



Example: the sequence

[1, 4, 11, 22, 37, 56, 79, 106, 137, 172, 211, 254, . . .]

is given by the polynomial function

f = λn.(2n2 + n + 1).

This is a function of the second degree.

f = \ n -> 2*n^2 + n + 1

MTG> take 12 (map f [0..])

[1,4,11,22,37,56,79,106,137,172,211,254]



Consider the difference sequence given by the func-
tion

d(f ) = λn.an+1 − an.

difs :: [Integer] -> [Integer]

difs [] = []

difs [n] = []

difs (n:m:ks) = m-n : difs (m:ks)

MGT> difs [1,4,11,22,37,56,79,106,137]

[3,7,11,15,19,23,27,31]



Fact: The difference function d(f ) of a polyno-
mial function f is itself a polynomial function.

If f = λn.(2n2 + n + 1), then:

d(f ) = λn.(2(n + 1)2 + (n + 1) + 1− (2n2 + n + 1)

= λn.4n + 3.

MGT> take 12 (map (\n -> 4*n + 3) [0..])

[3,7,11,15,19,23,27,31,35,39,43,47]

MGT> take 12 (difs (map f [0..]))

[3,7,11,15,19,23,27,31,35,39,43,47]



Fact: if f is a polynomial function of degree k
then d(f ) is a polynomial function of degree k−1.

For suppose f (n) is given by

ckn
k + ck−1n

k−1 + · · · + c1n + c0.

Then d(f )(n) is given by

ck(n + 1)k+ck−1(n + 1)k−1 + · · · + c1(n + 1) + c0

− (ckn
k + ck−1n

k−1 + · · · + c1n + c0).

f (n + 1)− f (n) has no term with nk.



Suppose f is a polynomial function of degree k.

Then dk(f ) will be a polynomial function of de-
gree 0.

A polynomial function of degree 0 is a constant
function.



Example of computing difference sequences until
we hit at a constant sequence:

-12 -11 6 45 112 213 354 541
1 17 39 67 101 141 187

16 22 28 34 40 46
6 6 6 6 6

The sequence of third differences is constant, so
the form of the original sequence is a polynomial
of degree 3.

To find the next number in the sequence, take the
sum of the last elements of the rows.



Charles Babbage (1791–1871)



Charles Babbage’s Difference Engine



If the input list has a polynomial form of degree
k, then after k steps of taking differences the list
is reduced to a constant list:

MGT> difs [-12,-11,6,45,112,213,354,541]

[1,17,39,67,101,141,187]

MGT> difs [1,17,39,67,101,141,187]

[16,22,28,34,40,46]

MGT> difs [16,22,28,34,40,46]

[6,6,6,6,6]



difLists ::[[Integer]]->[[Integer]]

difLists [] = []

difLists l@(xs:xss) =

if constant xs then l else

difLists ((difs xs):l)

where

constant (n:m:ms) =

all (==n) (m:ms)

constant _ =

error "lack of data/not a pf"



This gives the lists of all the difference lists that
were generated from the initial sequence, with the
constant list upfront.

MGT> difLists [[-12,-11,6,45,112,213,354]]

[[6,6,6,6],

[16,22,28,34,40],

[1,17,39,67,101,141],

[-12,-11,6,45,112,213,354]]



If a given list is generated by a polynomial, then
the degree of the polynomial can be computed by
difference analysis, as follows:

degree :: [Integer] -> Int

degree xs =

length (difLists [xs]) - 1



The following function gets the list of last ele-
ments of the difference lists for a given sequence:

genDifs :: [Integer] -> [Integer]

genDifs xs =

map last (difLists [xs])



A new list of last elements of difference lists is
computed from the current one by keeping the
constant element d1, and replacing each di+1 by
di + di+1.

nextD :: [Integer] -> [Integer]

nextD [] = error "no data"

nextD [n] = [n]

nextD (n:m:ks) = n : nextD (n+m:ks)



The next element of the original sequence is given
by the last element of the new list of last elements
of difference lists:

next :: [Integer] -> Integer

next = last . nextD . genDifs

MTG> next [-12,-11,6,45,112,213,354,541]

780



The difference engine is quite as intelligent as the
members of any Society for the Highly Gifted:

MTG> next [1,5,14,30,55]

91

MTG> next [1,9,36,100,225,441])

784



Gaussian Elimination

Difference analysis yields an algorithm for contin-
uing any finite sequence with a polynomial form.
Is it also possible to give an algorithm for finding
the form?

The answer is ‘yes’, and the method is Gaussian
elimination.



Carl Friedrich Gauss (1777–1855)



Example Application: Pie Cutting



The Pie Cutting Sequence

The pie cutting sequence is:

1, 2, 4, 7, 11, . . .

Difference analysis yields:

1 2 4 7 11
1 2 3 4

1 1 1

Thus, the polynomial is of the second degree, it
has form an2 + bn + c. We have to find a, b, c.



We know:

c = 1

a + b + c = 2

4a + 2b + c = 4

Elimination of c gives:

a + b = 1

4a + 2b = 3



a + b = 1

4a + 2b = 3

4a + 4b = 4

4a + 2b = 3
2b = 1

We get: a = 1
2, b = 1

2, and c = 1.

The form is: 1
2n

2 + 1
2n + 1 =

n(n+1)
2 + 1.



Generalization

Third degree:

d = a0

a + b + c + d = a1

8a + 4b + 2c + d = a2

27a + 9b + 3c + d = a3



Fourth degree:

e = a0

a + b + c + d + e = a1

16a + 8b + 4c + 2d + e = a2

81a + 27b + 9c + 3d + e = a3

256a + 64b + 16c + 4d + e = a4



Fifth degree:

f = a0

a + b + c + d + e + f = a1

32a + 16b + 8c + 4d + 2e + f = a2

243a + 81b + 27c + 9d + 3e + f = a3

1024a + 256b + 64c + 16d + 4e + f = a4

3125a + 625b + 125c + 25d + 5e + f = a5



Matrix Manipulation

Solving sets of linear equations can be viewed as
manipulation of matrices of coefficients.

The quadruple of linear equations in a, b, c, d for a
polynomial of the third degree gives the following
matrix: 

0 0 0 1 a0
1 1 1 1 a1
8 4 2 1 a2
27 9 3 1 a3





To solve this, we transform it to an equivalent
matrix in so-called echelon form or left triangular
form, i.e., a matrix of the form:

a00 a01 a02 a03 b0
0 a11 a12 a13 b1
0 0 a22 a23 b2
0 0 0 a33 b3


From this form, compute the value of variables d,
c, b, a by backward substitution.



Implementation

type Matrix = [Row]

type Row = [Integer]

rows, cols :: Matrix -> Int

rows m = length m

cols m | m == [] = 0

| otherwise = length (head m)



The function genMatrix produces the appropri-
ate matrix for a list generated by a polynomial:



genMatrix :: [Integer] -> Matrix

genMatrix xs =

zipWith (++) (genM d)

[[x]| x <- xs ]

where

d = degree xs

genM n = [[(toInteger x^(n-m))

| m <- [0..n]]

| x <- [0..n] ]



MTG> genMatrix [-7,-2,15,50,109,198,323]

[[0,0,0,1,-7],

[1,1,1,1,-2],

[8,4,2,1,15],

[27,9,3,1,50]]



Transformation to echelon form: use one row to
eliminate the first coefficient from the other rows
by means of adjustment:

adjustWith :: Row -> Row -> Row

adjustWith (m:ms) (n:ns) =

zipWith (-) (map (n*) ms)

(map (m*) ns)

This is used in:

echelon :: Matrix -> Matrix



MTG> echelon [[0,0,0,1,-7],

[1,1,1,1,-2],

[8,4,2,1,15],

[27,9,3,1,50]]

[[1,1,1,1,-2],

[0,4,6,7,-31],

[0,0,12,22,-142],

[0,0,0,-48,336]]



The function for computing the values of the vari-
ables is backsubst.

MTG> backsubst [[1,1,1,1,-2],

[0,4,6,7,-31],

[0,0,12,22,-142],

[0,0,0,-48,336]]

[1 % 1,3 % 1,1 % 1,-7 % 1]



To use all this to analyze a polynomial sequence:

1. find the degree of the polynomial by difference
analysis,

2. generate the appropriate matrix,

3. put it in echelon form,

4. compute the values of the unknowns by back-
ward substitution.



solveSeq :: [Integer] -> [Rational]

solveSeq =

backsubst . echelon . genMatrix

The sequence for the pie cutting process yields:

MTG> solveSeq [1,2,4,7,11]

[1 % 2,1 % 2,1 % 1]



What has this to do with Intelligence?

We have managed to implement the intelligent
task of guessing next elements of polynomial se-
quences.

We have also implemented the intelligent task of
analysing polynomial sequences to find the form
of the generating polynomial function.

The computer is much better at these tasks than
any human.



Does the task of building intelligent machines con-
sist of programming more and more of these tricks
(plus ‘meta-tricks’ for selecting the right candi-
date from the bag of tricks)?

“Yes”: You are an AI behaviourist.

“No”: You are an AI essentialist.



What has this to do with Consciousness?

Nothing.

Consciousness is first-person-singular.

Consciousness can only be experienced.

Consciousness is the root of all experience.

Whatever is object of attention is never conscious-
ness.



Consciousness = See for Yourself

Some experiments suggested by
Douglass Harding, ‘The Headless Way’

Douglas Harding (1909– )



Pointing here.
Point to your friend’s feet, then yours; to his
legs, then yours; to his torso, then yours; to
his head, then? What, on present evidence, is
your finger now pointing at?



Single eye.
In your own experience at this moment, are
you peering through two little holes in a kind
of meat-ball? If so, what’s it like in there -
dark, stuffy, congested, small? Slowly put on
a pair of spectacles and notice how those two
little ’windows’ become one vast ’window’ -
spotlessly clean and with nobody looking out
of it.



Putting on a no-face.
Cut a head-sized hole in a card. Hold the card
out at arm’s length, noting the hole’s bound-
aries. See how they vanish into your bound-
lessness as you bring the card forward and put
it right on - to your face?



Paper bag.
Get an ordinary bag (preferably white) about
12” square, and cut the bottom off. Fit your
face into one end while your friend fits his into
the other. How many faces are given in the
bag? Dropping memory and imagination, are
you face-to-face or face-to-no-face?



In the body?
By stroking and pinching and pummelling, try
to build up here on your shoulders the sort of
thing you see over there on your friend’s shoul-
ders. Now try to get inside it, and describe
its contents. Aren’t you still out-of-doors, as
much at large as ever? Look at your hand. Are
you in it, or is it in you?



Further Reading

A
m

ste
rd

a
m

 U
n

ive
rsity

 P
re

ss

Denkende machines
Computers, rekenen,
redeneren

Jan van Eijck, Jan Jaspers,
Jan Ketting, Marc Pauly

Exact
in 

context
O

E


